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Abstract: This study proposes an enhanced Multi-Objective Grey Wolf Optimizer 

(MOGWO) using adaptive population diversity tuning and levy flight theories (EMOGWO-

ADTLF). It addresses the issues of parameter tunning by balancing exploration and 

exploitation. Using MATLAB and Python library Pymoo, the study implemented and 

evaluated the performance of EMOGWO-ADTLF using multi-objective test problems. The 

results were compared to high-performing algorithms like MOGWO, Non-Dominated 

Sorting Grey Wolf Optimizer (NSGWO), Dynamic Chaos MOGWO (DCMOGWO), Multi-

Objective Mayfly Algorithm (MMA), Multi-Objective Antlion Algorithm (MOALO) and 

Multi-Objective Dragonfly Algorithm (MODA). In this work, inverted generational 

distance (IGD) and hypervolume (HV) were the metrics used to measure the performance 

of algorithms. The metrics measure the diversity, coverage, and spread of solutions. The 

results obtained showed the potency of EMOGWO-ADTLF in approximating the Pareto 

fronts. It ranks first in overall average scores in IGD and HV, with total rank scores of 17 

and 18, respectively. 

 

 

 

1. INTRODUCTION 

 

 Multi-objective optimization has become important in solving problems that involve 

conflicting objectives in the era of computational intelligence [1,2]. In multi-objective 

https://doi.org/10.34302/CJEE/TKYD3692
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optimization, the goal is always to find a set of solutions, each with a different trademark 

among the objectives. This is unlike single-objective optimization, which gives a single 

solution [1]. Multi-objective optimizers have been applied in real-world applications. They 

are found in engineering designs [2,3], environmental management, and financial planning. 

For example, one can optimize between service quality and energy use in cloud 

manufacturing [2]. In power systems engineering, there can be a trade-off between technical 

and economic effectiveness [3–7]. Also in industrial engineering, multi-objective optimizers 

help to balance conflicting objectives like cost efficiency and process quality [8]. 

The advantage of multi-objective optimization is its ability to give diverse options for 

decision-making. This diversity is crucial because it helps us make better decisions, especially 

when focusing on just one solution could lead to poor and suboptimal results [1,9]. Multi-

objective optimizers are of different kinds. Nature-inspired type is widely used due to its 

ability to navigate complex solutions effectively. One of these algorithms is MOGWO. 

MOGWO is an optimizer that solves complex multi-objective problems and is easy to 

implement [1]. This algorithm has successfully been used in many engineering studies 

including multi-objective power flow studies [10], multi-robot exploration [11], wind speed 

forecasting [12] and optimal sizing of microgrids [13]. It has also been used to solve problems 

such as energy planning for smart homes [14] and reactive power dispatch [15] and 

transportation location routing [16]. Despite the numerous applications of MOGWO, it still 

has some deficiencies, just like other metaheuristic algorithms. 

Common deficiencies of the MOGWO algorithm include limited performance and 

scalability, especially when the problem has many objectives [1,17]. The challenge of 

parameter tuning in Grey Wolf Optimizer (GWO) algorithms also exists [18]. The MOGWO 

algorithm depends on two parameters to balance between exploration and exploitation in 

solving multi-objective problems, and the choice of these parameters often affects the quality 

of the solution [19]. Another common issue with MOGWO is local optima entrapment, 

especially in cases where there is a need to find global optimum from many local optima 

[2,20–22]. 

Some improvements have been made to enhance the performance of the MOGWO 

algorithm. Yang et al. [23] proposed an improved MOGWO using the ranked-order-value 

rule for dynamic archive maintenance and solution representation. This algorithm performed 

better in coverage, spread, and convergence than MOGWO and Multi-Objective Particle 

Swarm Optimizer (MOPSO). Using a backward learning strategy, Yang et al [2] improved 

MOGWO to address diversity and local optimum issues. Tian et al. [20] improved MOGWO 

using multiple techniques. The strategy involved clustering non-dominated solutions, cluster 

density head wolves’ selection, and mutation operator for improved exploration. The results 

showed an enhanced distribution and diversity compared to the MOGWO algorithm. Another 

work by Gu [21] introduced an improved MOGWO (DCMOGWO) using dynamic chaos 

search techniques to solve local optima issues and search precision. DMOGWO outperformed 
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MOGWO and other nature-inspired algorithms in benchmarked problems. Tlili et al.  [17] 

developed an improved MOGWO (IMOGWO) to help deal with many objectives. In a 

comparative study with MOGWO and other optimizers, IMOGWO provided better 

convergence and exploration. Al-Tashi et al. [24] proposed a binary variant of MOGWO 

(BMOGWO-S) to enhance feature selection in classification. BMOGW-S showed effective 

classification and feature reduction error rates compared with multi-objective optimizers 

using the UCI dataset. Other variants of MOGWO that offer enhanced performance include 

NSGWO [25], Levy-based MOGWO (LMOGWO) [26], improved MOGWO based on 

individual diversity (IMOGWO) [27], Advanced MOGWO (MOAGWO) [28] and Hybrid 

MOGWO (HMOGWO) [29]. 

The aforementioned variants of MOGWO have advanced its performance. However, 

fundamental defects like avoiding local optima, enhanced parameter tuning, maintaining 

diversity, and improving convergence still need attention. Though some variants introduced 

techniques and mechanisms for enhanced parameter tuning, the issue of tuning parameters to 

balance between exploration and exploitation has not been comprehensively tackled. There 

is still the need for intuitive and efficient approaches to parameter tuning. 

This study proposes an Enhanced MOGWO using adaptive diversity tuning and levy 

flight (EMOGWO ADTLF) theories to enhance parameter tuning. This enhancement adjusts 

the control parameters dynamically to balance between exploration and exploitation. This 

ensures better exploration by reaching the global optimal solutions and reducing local optima 

entrapment. It also provides better convergence of the obtained Pareto solution and robustness 

in handling complex and different optimization tasks.  

The rest of the paper is structured into sections: Section 2 explains the MOGWO. 

Section 3 presents the proposed EMOGWO-ADTLF using the population diversity tuning 

technique and levy flight theories. Section 4 highlights the benchmark functions used for 

testing and test parameters. Section 5 presents the results of implementing the enhanced 

MOGWO and its comparison with others. Conclusions drawn are provided in section 6. 

 

 

2. MULTI-OBJECTIVE GREY WOLF OPTIMIZER 

 

2.1. MOGWO Algorithm 

 

 MOGWO is a nature-inspired algorithm based on the hunting behavior of grey wolves 

[1]. This algorithm advances the GWO, which can only solve a single objective problem [30].  

The GWO employs simulated social leadership and encircling behavior to discover 

optimal solutions. With regard to social leadership, the decreasing order of dominance is 

designated as alpha (α), beta (β), delta (δ) and omega (ω) wolves. This hierarchy influences 

the decision-making process in the search space [1,30]. 
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The encircling mechanism observed in grey wolves during hunting is modeled using 

(1) and (2).  

𝐷⃗⃗  =  |𝐶  . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|                                                               (1) 

 

𝑋 (𝑡 +  1) =  𝑋 𝑝 (𝑡) − 𝐴 ∙  𝐷⃗⃗                                                        (2) 

 

 𝑋 𝑝 is the location vector of the prey, while 𝑋  is the position vector of a wolf, and t indicates 

the current iteration. The vectors 𝐴  and 𝐶  represent coefficients. 

The calculation of vectors 𝐴  and 𝐶  are given in (3) and (4). 

 

𝐴 = 2 𝑎 ∙ 𝑟 1 − 𝑎                                                                       (3) 

 

𝐶 = 2 ∙ 𝑟 2                                                                         (4) 

 

Here, 𝑎  (convergence factor) linearly decreases from 2 to 0 during the iterations. 𝑟 1 and 𝑟 2 are 

random vectors within the [0, 1] range. 

The GWO preserves the top three solutions obtained thus far and compels other search 

agents, including the ω, to adjust their locations relative to these solutions. Equations (5) to (11) 

are iteratively applied to each search agent throughout the search process, simulating the 

hunting behavior and identifying promising areas within the search region [30]. 

 

 𝐷⃗⃗  ⃗𝛼  =  |𝐶 1  ∙ 𝑋 𝛼  − 𝑋 |                                                                     (5) 

 

𝐷⃗⃗ 𝛽  =  |𝐶 2  ∙ 𝑋 𝛽 − 𝑋 |                                                                    (6) 

 

   𝐷⃗⃗ 𝛿  =  |𝐶 3  ∙ 𝑋 𝛿 − 𝑋 |                                                                    (7) 

 

𝑋 1 = |𝑋 𝛼 − 𝐴 1 ∙ (𝐷⃗⃗ 𝛼)|                                                                 (8) 

 

       𝑋 2 = |𝑋 𝛽 − 𝐴 2 ∙ (𝐷⃗⃗ 𝛽)|                              (9) 

 

𝑋 3 = |𝑋 𝛿 − 𝐴 3 ∙ (𝐷⃗⃗ 𝛿)|                                                               (10) 

 

𝑋⃑(𝑡 +  1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3 

3
                                                               (11) 

 

The GWO optimization process begins by randomly generating solutions as the initial 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

11 

population. Through the optimization, the three best solutions obtained thus far are saved and 

designated as α, β, and δ) solutions. The position updating equations (5) to (11) are activated 

for each wolf (search agents excluding alpha, beta, and delta). Simultaneously, parameters 𝐴⃗⃗  ⃗  

and 𝑎  experience a linear decrease over the iteration. Consequently, search agents move away 

from the prey when  𝐴⃗⃗  ⃗>1 and move close to the prey when  𝐴⃗⃗  ⃗<1. Ultimately, the position and 

score of the α solution are recorded as the best solutions achieved during optimization once the 

iterations have ended [30]. 

To turn the GWO into a multi-objective optimizer (MOGWO), two features are added. 

The first component is the archive, and the second is the leader selection strategy. The archive 

stores the non-dominated solutions. The leader selection strategy helps obtain the α, β, and δ 

solutions and make them leaders. In the archive, an archive controller manages, saves, and 

retrieves Pareto solutions during iterations. A specific rule governs the entry of new solutions 

into the archive. If an archive member dominates any new solution, entry is not allowed. New 

solutions can enter the archive if it dominates one or more members. In this case, the dominated 

solutions are deleted. New solutions are also allowed entry if there is no dominance between 

them and stored archive solutions. The MOGWO algorithm has a grid mechanism that helps to 

rearrange the objective space when an archive gets full. The mechanism deletes solutions from 

the most crowded areas and stores the new solutions in the least overcrowded zones. This 

ensures better distribution of solutions [1]. 

GWO algorithm uses the parameter ′𝒂′ to decide the search radius. This value controls 

the exploration-exploitation trade-off. The parameter ranges from 0 to 2, decreasing linearly 

during the iteration. This decrease assists the algorithm by reducing parameter tuning. However, 

some defects may affect the algorithm performance depending on the problem [19]. The 

challenges include: 

• Excessive early exploration: If the initial value of ′𝒂′ is too high, the algorithm will 

likely over-explore without looking for optimal regions. This may delay convergence. 

• Premature Exploitation: If ′𝒂′ decreases rapidly, it could cause early exploitation. The 

algorithm gets trapped in local optima and misses better solutions. 

• Fine-tuning difficulty: Determining the optimal starting and ending value for linear 

tuning techniques may require adjustment and experimentation depending on the type 

of problem. 

 

2.2. Proposed EMOGWO-ADTLF Using Population Diversity Tuning Technique 

and Levy Flight 

 

In this work, population diversity is employed to improve the performance of MOGWO. 

Population diversity in metaheuristics refers to the variety and spread of possible solutions 

within the population evaluated by the algorithm. It measures how different the individuals 
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(solutions) in the population are from each other. High diversity means the solutions are spread 

across a wide area of the search space, while low diversity indicates that solutions are clustered 

closely together. Maintaining diversity within the population in algorithms is essential in 

balancing exploration and exploitation. Population diversity reduces premature convergence, 

helping to prevent suboptimal performance. Diversity is crucial in dynamic optimization 

problems where the nature of the problem keeps changing. In multi-objective optimization, 

diversity helps to search the entire Pareto front to determine the global solution [31].  

An adaptive population diversity scheme is introduced into MOGWO to deal with the 

issues of excessive exploration, early exploitation, and fine-tuning difficulty. The proposed 

adaptive population diversity scheme dynamically adjusts the parameter ‘𝒂’ depending on the 

problem. The proposed scheme is presented in presented in algorithm 1. 

 

Algorithm 1: Proposed adaptive scheme to tune ‘𝒂’ 

start  

1 Set diversity threshold  

2 For each pair of wolves (i, j), calculate the Euclidean distance between their current 

positions in the solution space using:   

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖ 

    Xi and Xj are adjacent search agents (wolves). 

3     For each distance calculated, normalize the distances using: 

 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑚𝑎𝑥 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

4         Calculate the average of all normalized distances as a measure of the diversity 

of the  

        wolves using:  

 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  
1

𝑁(𝑋) × (𝑁(𝑋) − 1)
∑ ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑖, 𝑗)

𝑁(𝑥)

𝑗=𝑖+1

𝑁(𝑋)−1

𝑖=𝑖

 

                where N(X) is the number of wolves. 

5                If diversity < diversity threshold  

6                      Adjust 𝑎 as;  𝑎 = 𝑎 × 1.05  (exploration)  

7                If diversity > diversity threshold  

8                     Adjust 𝑎 as; 𝑎 = 𝑎 × 0.95   (exploitation) 

9                     Adjust 𝑎 to stay within bounds as; max[0.1,min(𝑎, 2)]   

10    End 

11 End 
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The adaptive scheme enhances MOGWO in the following ways.   

• It adjusts ′𝒂′ upward to allow the search agents (wolves) to explore new optimal regions 

by moving away from their current location when there is high level of similarity within 

the population. 

• It adjusts ′𝒂′ downwards to allow search agents to focus narrowly on richer regions 

when solutions are highly scattered. This encourages exploitation and enhances 

convergence to the optimal solution. 

The adaptive technique provides flexible tuning of parameters. It not only improves 

convergence but also provides robustness. The scheme improves convergence because 

stagnation and excessive exploration are prevented. The tuning method equips MOGWO with 

the robustness to effectively deal with complex and diverse problems.  

In addition to the adaptive scheme, a Levy flight operator is employed to enhance the 

algorithm.  Levy flight is a random walk with a step size that follows a heavy-tailed probability 

distribution. This approach is used in optimization algorithms to enable a search strategy that 

combines local and global exploration efficiently [32]. Using steps of varying lengths, levy 

flight helps the algorithm explore better by reaching diverse regions and escaping local optima 

entrapment [33].  

To implement the levy-based technique in MOGWO, the levy flight operator is 

introduced into (4) to modify the parameter ′𝑪′. In (4), ′𝑪′ is a critical parameter determining 

the quality of solution updates in the GWO.  

The modified ′𝑪′ parameter is defined according to (12) 

 

𝐶 = 𝑙𝑒𝑣𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠)                       (12) 

 

Levy Flight operator is applied to equation (4) to improve MOGWO as follows.  

 

Step 1: Calculate the step size (Δ) for the levy distribution using (13). This ensures that 

the step size is appropriate for the problem’s dimensionality. 

 

𝛥 =
1

√𝐷
                                                                  (13) 

 

where D is the problem’s dimension.                                        

 

Step 2: Generate a random number from the Cauchy distribution as a Cauchy number 

(f(x)). This work uses the standard probability distribution function (PDF) with x 

having location parameter 0 and scale parameter 1 defined according to (14). 

 

 𝑓(𝑥) =
1

𝜋(1+𝑥2)
                                                               (14)  
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Step 3:  Calculate the levy number (L) using (15). 

 

𝐿 = 𝑠 ×  𝑓(𝑥)                                                             (15) 

The flow chart of EMOGWO-ADTLF incorporating adaptive population diversity and 

levy flight is shown in fig. 1. 

 

 

Fig. 1. Flow Chart of EMOGWO-ADTLF 
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3. BENCHMARK FUNCTIONS USED AND TEST PARAMETERS 

 

3.1. Benchmark Functions 

 

Eight standard multi-objective test functions in the CEC 2009 [34] were used as test 

beds. Table 1 presents the benchmark problems chosen. These test functions offer diverse multi-

objective search spaces with distinct Pareto fronts, including convex, non-convex, 

discontinuous, and multi-modal scenarios.  

In addition, this study also used two benchmark real-world engineering problems. The 

use of these problems demonstrates the applicability and robustness of multiobjective 

optimization algorithms in solving complex, real-world engineering tasks that involve multiple 

conflicting objectives. They include the design of the welded beam and the Disc Brake. The 

welded beam multi-objective design is a well-known test problem in many studies. This 

benchmark design has four variables. They include the beam’s thickness (h), width (w), depth 

(d) and length (L). The objective is to reduce the fabrication cost (c) and the end deflection (δ). 

The main constraints are shear stress, bending stress, and buckling load [35,36]. The detailed 

equations of this problem are provided in Table 2.  

The goals of the multiple-disc brake are to reduce the brake's mass and minimize the 

stopping time. The variables to be determined in the design are the force (F), the number of 

friction surfaces (s) as well as inner and outer radius (r and R). The design must adhere to 

several constraints, including the minimum allowable length between the radii, the maximum 

allowable length of the brake, as well as limitations related to pressure, temperature, and torque 

[35,36]. The objectives and constraints of this problem are also shown in Table 2. 

 

Table 1. Test Functions, UF1 – UF8 

Function                                                Mathematical Expression 

UF1 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ [𝑥𝑗 −  𝑠𝑖𝑛 (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )]

2

𝑗 ∈ 𝐽1 , 

𝑓2 =  1 – √ 𝑥 + 
2

|𝐽2|
∑ [𝑥𝑗 −  𝑠𝑖𝑛 (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )]

2

𝑗 ∈ 𝐽2 , 

𝐽1  =  {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛},  𝐽2  = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛} 

 𝑃𝐹 𝑓2 = 1 − √𝑓1, 0 ≤ 𝑓1 ≤ 1 

UF2 

𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ 𝑦𝑗

2:   𝑓2 =  1 – √ 𝑥 +
2

|𝐽2|
∑ 𝑦𝑗

2
𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 , 

𝐽1  =  {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛},     𝐽2  = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛} , 𝑦𝑗

= {
𝑥𝑗 − [0.3𝑥1

2 cos (24𝜋𝑥1  + 
4𝑗𝜋

𝑛
 ) + 0.6𝑥1] cos (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )  𝑖𝑓 𝑗 ∈  𝐽1

𝑥𝑗 − [0.3𝑥1
2 cos (24𝜋𝑥1  +  

4𝑗𝜋

𝑛
 ) + 0.6𝑥1] cos (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )  𝑖𝑓 𝑗 ∈  𝐽2

} 

𝑃𝐹: 𝑓2 = 1 − √𝑓1, 0 ≤ 𝑓1 ≤ 1 
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Function                                                Mathematical Expression 

UF3 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2 𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 )𝑃𝐹: 0 ≤ 𝑓1 ≤ 1. 

 𝑓2 = √𝑥1  +  
2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2 𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 )𝑃𝐹: 𝑓2 = 1 − √𝑓1. 

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  𝑦𝑗 = 𝑥𝑗 − 𝑥𝑗
0.5(1+

3(𝑗−2)
𝑛−2

)
, 𝑗 = 2,3, … , 𝑛 ,,   

UF4 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ ℎ(𝑦𝑗)  

𝑗 ∈ 𝐽1

 𝑓2  = 1 − 𝑥2 + 
2

|𝐽2|
∑ ℎ(𝑦𝑗),

𝑗 ∈ 𝐽2

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  

 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛 , ℎ(𝑡)  =

|𝑡|

1 + 𝑒2|𝑡|
 

𝑃𝐹: 𝑓2 = 1 − 𝑓2, 0 ≤ 𝑓1 ≤ 1 

UF5 

 𝑓1  = 𝑥1 + (
1

2𝑁
) + 𝜖 |sin(2𝑁𝜋𝑥1)| +

2

|𝐽1|
∑ ℎ(𝑦𝑗)𝑗 ∈ 𝐽1 , 

 𝑓2  = 1 − 𝑥1 + (
1

2𝑁
) + 𝜖 |sin(2𝑁𝜋𝑥1)| +

2

|𝐽2|
∑ ℎ(𝑦𝑗)𝑗 ∈ 𝐽2 , 

𝐽1 𝑎𝑛𝑑 𝐽2  =  𝑈𝐹1, 𝜖 > 0 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛  , ℎ(𝑡)

=  2𝑡2 − cos(4𝜋𝑡) + 1 

Its PF has 2𝑁 + 1 solutions: (
𝑖

2𝑁
, 1 −

𝑖

2𝑁
) for 𝑖 = 0,1, … ,2𝑁 

UF6 

𝑓1  = 𝑥1 + 𝑚𝑎𝑥 {0,2 (
1

2𝑁
+  𝜖) sin(2𝑁𝜋𝑥1)} +

2

|𝐽1|
(4∑ 𝑦𝑗

2 −𝑗 ∈ 𝐽1

2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 1 𝑗 ∈ 𝐽1 ). 

 𝑓2  = 1 − 𝑥1 + 𝑚𝑎𝑥 {0,2 (
1

2𝑁
+  𝜖) sin(2𝑁𝜋𝑥1)} +

2

|𝐽2|
(4∑ 𝑦𝑗

2 −𝑗 ∈ 𝐽2

2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 1 𝑗 ∈ 𝐽2 ). 

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛 

PF: One isolated  (0,1), and 𝑁 disconnected: 𝑓2 = 1 − 𝑓1, 𝑓1 ∈

⋃  𝑁
𝑖=1 [

2𝑖−1

2𝑁
,
2𝑖

2𝑁
] . 𝑁 = 2 

UF7 

𝑓1 = √𝑥1
5 +

2

|𝐽1|
∑ 𝑦𝑗

2  𝑗 ∈ 𝐽1 𝑓2 = 1 − √𝑥1
5 +

2

|𝐽2|
∑ 𝑦𝑗

2 𝑗 ∈ 𝐽2 0 ≤ 𝑓1 ≤ 1. 

𝐽1 𝑎𝑛𝑑 𝐽2  =  𝑈𝐹1  𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛, 𝑃𝐹: 𝑓2 = 1 − 𝑓1, 

UF8 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +
2

|𝐽1|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  +  

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽1 . 

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +
2

|𝐽2|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  +  

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽2 . 

𝑓3 = sin(0.5𝑥1𝜋) +
2

|𝐽3|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  + 

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽3 . 

𝐽1  =  {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 − 1 𝑖𝑠 𝑎 𝑚𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓  3 }  

, 𝐽2 = {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 − 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓  3 } PF is 𝑓1
2 + 𝑓2

2 + 𝑓3
3 = 1,  

 𝐽3 = {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  3 }, Its , 0 ≤ 𝑓1, 𝑓2𝑓3 ≤ 1 
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Table 2. Benchmarked Engineering Problems 

Problem Objectives and Constraints 

Welded 

Beam 

Design 

minimise 𝑓1(𝒙) = 1.10471𝑤2𝐿 + 0.04811𝑑ℎ(14.0 + 𝐿), 𝑓2 = 𝛿, 

subject to 

𝑔1(𝒙) = 𝑤 − ℎ ≤ 0, 𝑔2(𝒙) = 𝛿(𝒙) − 2.5 × 10−1 ≤ 0, 

𝑔3(𝒙) = 𝜏(𝒙) − 1.36 x 104x ≤ 0, 𝑔4(𝒙) = 𝜎(𝒙) − 3.0 x 104 ≤ 0, 

𝑔5(𝒙) = 0.10471𝑤2 + 0.04811ℎ𝑑(14 + 𝐿) − 5.0 ≤ 0, 𝑔6(𝒙)

= 1.3 × 10−1 − 𝑤 ≤ 0, 

𝑔7(𝒙) = 6,000 − 𝑃(𝒙) ≤ 0, 0.1 ≤ 𝐿, 𝑑 ≤ 10 and 1.25 x 10−1 ≤ 𝑤, ℎ ≤ 2.0 

where 

𝜎(𝒙) =
504,000

ℎ𝑑2
, 𝑄 = 6,000 (14 +

𝐿

2
) , D =

1

2
√𝐿2 + (𝑤 + 𝑑)2 

  𝐽 = √2𝑤𝐿 [
𝐿2

6
+

(𝑤 + 𝑑)2

2
] , 𝛿 =

65,856

30,000ℎ𝑑3
, 𝛽 =

𝑄𝐷

𝐽
 

𝛼 =
6,000

√2𝑤𝐿
, 𝑃 = 0.61423 × 106

𝑑ℎ3

6
(1 −

𝑑√30/48

28
) 

Brake Disc 

Design 

Minimize 𝑓1(𝒙) = 4.9 × 10−5(𝑅2 − 𝑟2)(𝑠 − 1), 

𝑓2(𝒙) =
9.82 × 106(𝑅2 − 𝑟2)

𝐹𝑠(𝑅3 − 𝑟3)
 

subject to 

𝑔1(𝑥) = 20 − (𝑅 − 𝑟) ≤ 0, 

𝑔2(𝑥) = 2.5(𝑠 + 1) − 30 ≤ 0 

𝑔3(𝑥) =
𝐹

3.14(𝑅2−𝑟2)
− 0.4 ≤ 0, 

𝑔4(𝒙) =
2.22×10−3𝐹(𝑅3−𝑟3)

(𝑅2−𝑟2)2
− 1 ≤ 0, 

𝑔5(𝒙) = 900 −
2.66 x 10−2𝐹𝑠(𝑅3−𝑟3)

(𝑅2−𝑟2)
≤ 0. 

5.5 x 10 ≤ 𝑟 ≤ 8.0 x 10, 7.5 x 10 ≤ 𝑅 ≤ 1.1 x 102 

1.0 x 103 ≤ 𝐹 ≤ 3.0 x 103, 2 ≤ 𝑠 ≤ 20. 

 

3.2. Performance Metrics 

 

This study uses two performance metrics with abilities to test for convergence, diversity, 

and spread to measure the performance of the EMOGWO-ADTLF and compare it with other 

muti-objective algorithms. The metrics include Inverted Generational Distance (IGD) [37] and 

Hypervolume (HV) [38].  

IGD is a measue that determines the diversity and convergence of a multi-objective 

algorithm. It assesses how close the obtained solutions are to the Pareto front. It also determines 
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how the obtained solution spread over the Pareto solution. The value of IGD obtained is an 

indication of how well an algorithm maintains its balance. A low IGD value shows an algorithm 

is well balanced. It shows that the algorithm is neither wandering in non-optimal regions (over-

exploration) nor stuck in local optima (over-exploitation) [37]. IGD is mathematically 

represented as (19). 

 

𝐼𝐺𝐷 =
√∑  𝑛

𝑖=1  𝑑𝑖
2

𝑛
                                                                          (19)    

  

where 𝑛 is the count of pareto solutions,  𝑑𝑖 indicates the euclidean distance from the 𝑖th  pareto 

optimal solution and the nearest obtained solution.  

HV is a performance metric that measures the volume of the Pareto front occupied by 

the obtained solution. It measures diversity, convergence and spread of the solution. It is a 

widely used metric for benchmarking the performance of multi-objective optimizers. The HV 

is determined with respect to a reference point. The reference point is a value worse than the 

any value in the obtained Pareto solutions. A high hypervolume means a better diversity, 

convergence, and distribution of the obtained solution. Mathematically, HV is given by (20) 

[38]. 

𝐻𝑉(𝑆, 𝑟) = 𝜆𝑚(⋃  𝑧∈𝑆 [𝑧; 𝑟])                                                            (20) 

 

𝜆𝑚 is the Lebesgue measure. It is the size of true Pareto front occupied by the solution. m is the 

number of objectives.  ⋃  𝑧∈𝑆  is the union of points z in the set S. r is the reference point. 

 

3.3. Experimental Setups 

 

The study used two experimental setups. The first experiment compared EMOGWO-

ADTLF with MOGWO and two high-performing other variants of MOGWO in the literature 

namely NSGWO [25] and DCMOGWO [21]. This experiment analyzed the graphs of obtained 

Pareto against true Pareto and determined IGD and HV values. The second experiment also 

compared EMOGWO-ADTLF to three well-known, efficient, and robust algorithms. They 

include Multi-Objective Mayfly Algorithm (MMA) [39] , Multi-Objective Ant Lion Optimizer 

(MOALO) [36] and Multi-Objective Dragonfly Algorithm (MODA) [40] using multi-objective 

test functions. In the third experiment, MOGWO was again compared with MMA, MOALO 

and MODA using real-world engineering benchmarked problems. The metrics of comparison 

were the IGD and HV. 

This work used MATLAB 2021 to execute all algorithms to obtain the Pareto solutions. 

The general parameters of all algorithms were as follows:  

• Number of search agents: 100 

• Number of iterations: 3000 
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• Number of runs: 03 

• Archive size: 100. 

These parameters were selected to guarantee a thorough and efficient evaluation of the 

multi-objective algorithms. Utilizing 100 search agents strikes a practical balance, offering 

enough diversity without excessively taxing computational resources. The selected 3000 

iterations ensure the search process is detailed enough to discover and refine multiple solutions, 

accounting for the complexity and multi-objective nature of the problems. An archive size of 

100 maintains a balance between storing a diverse set of Pareto-optimal solutions and managing 

computational resources. Conducting multiple runs provides statistically significant insights 

into the performance of the algorithms.  

Subsequently, there were comparisons of obtained Pareto solutions and true Pareto 

fronts using the Python library Pymoo. Pymoo is a specialized multi-objective optimization and 

analysis tool. The desktop computer used for this study was an HP ZB G4 workstation with the 

processor Intel® Xeon ® Silver 4108 CPU @ 1.80 GHz (16 CPUs) and memory of 64 GB. 

This specification provided enough computational power and efficiency for the rigorous 

simulations and computations in this work.  

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. Analysis of EMOGWO-ADTLF against MOGWO and its Variants 

 

Fig. 2 presents the plots of the obtained Pareto fronts against the true Pareto fronts for 

UF1 to UF3. In the UF1 graph, EMOGEO-ADTFL and MOGWO show better convergence and 

spread than NSGWO and DCMOGWO. EMOGWO-ADT has a better distribution of Pareto 

solutions than MOGWO. All algorithms show better convergence, diversity, and distribution in 

UF2 than in UF1. Of the four algorithms, NSGWO shows better coverage. In UF3, the 

algorithms struggle to approximate the Pareto fronts with EMOGWO-ADTLF having better 

spread and convergence than the rest.  

Fig. 3 shows the graph of test functions UF4. UF5 and UF6. In UF4, EMOGWO-

ADTLF and DCMOGWO closely approximate the Pareto fronts and have better spread. 

NSGWO and MOGWO show good convergence, but poor distribution compared to 

EMOGWO-ADTLF and DCMOGWO. All the algorithms find it difficult to approximate the 

Pareto fronts in UF5 and UF6, with only a few non-dominated Pareto solutions. NSGWO 

appears to have a better convergence and spread than the rest in UF6. 
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Fig. 2: Graph of test functions UF1, UF2 and UF3 
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Fig. 3: Graph of test functions UF4, UF5 and UF6 

 

The plots of Pareto solutions for the algorithms are shown in fig. 4. For the UF7, 

EMOGWO-ADTLF shows better convergence, spread and distribution than the rest of the 

algorithms.  MOGWO shows good spread but poor distribution while NSGWO and 

DCMOGWO struggle with both spread and distribution. In the three-dimension UF8 function, 

EMOGWO-ADTLF and NSGWO have better spread and distribution but not all the obtained 

Pareto fronts converge to the Pareto front. MOGWO has good convergence but struggles with 

spread and coverage. DCMOGWO has poor convergence, spread and distribution. 

Overall, EMOGWO-ADTLF shows a consistent close approximation of the Pareto 

fronts in most of the test functions. NSGWO, MOGWO and DCMOGWO perform variably 

across the test functions. It shows reasonable approximations but sometimes suffers from spread 

and distribution. DCMOGWO and MOGWO’s performance reduces as the complexity of the 

functions increases.  
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Fig. 4: Graph of test functions UF7 and UF8 

 

4.1.1.  Analysis of IGD and HV Values for EMOGWO-ADTLF and MOGWO Variants  

The results of IGD values for EMOGWO-ADTLF, MOGWO, NSGWO and 

DCMOGWO are presented in Table 3. The statistical measures are the average (AVG), median 

(MDN), standard deviation (SD), best score (BS) and worst score (WS). In UF1, EMOGWO-

ADTLF dominates in the performance metrics, obtaining the best values in average, median, 

best and worst score values. For this function, EMOGWO-ADTLF shows high diversity and 

convergence. This implies the algorithm can balance exploration and exploitation for this test 

function. DCMOGWO outperforms NSGWO and MOGWO in terms of average IGD but below 

EMOGWO-ADTLF. NSGWO has the best standard deviation value. For the UF2 function, 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

23 

EMOGWO-ADTLF has the best possible value, but its best average value is slightly below 

NSGWO. In UF3, UF4 and UF6 functions, EMOGWO-ADTLF dominates in both average and 

best scores. This again shows the strength of EMOGWO-ADTLF to provide convergence and 

diversity in these functions. NSGWO shows strength in closely approximating the Pareto fronts 

in the UF6 function. It dominates in four of the performance metrics. In UF7, EMOGWO-

ADTLF shows its highest strength, dominating in all the performance metrics. It is an indication 

of the ability of MOGWO-ADTLF to handle complex problems. NSGWO has the lowest 

average, median, standard deviation, and worst values in UF8. This performance of EMOGWO-

ADTLF closely follows NSGWO. Both MOGWO and DCMOGWO struggle to handle this 

complex problem. For this three-dimensional problem function, NSGWO and EMOGWO-

ADTLF have better diversity and convergence. 

Across all the functions, EMOGWO-ADTLF frequently performs better than other 

algorithms in terms of IGD, showing high effectiveness and efficiency. This is proof of 

convergence and diversity. It demonstrates the ability of EMOGWO-ADTLF to provide a 

balance between exploration and exploitation as well as closely approximating the Pareto 

fronts. NSGWO also shows competitive performance especially in complex problems.  

Table 4 presents the HV value for EMOGWO-ADTLF, MOGWO, NSGWO and 

DCMOGWO. EMOGWO-ADTLF has the highest values in terms of average, median and 

worst values in UF1 and UF2. It also has the highest best value in UF1. This shows that the 

Pareto solutions of EMOGWO-ADTLF cover the objective space effectively in both functions. 

MOGWO and DCMOGWO are the second-best performers for UF1 with NSGWO providing 

competitive performance to EMOGWO-ADTLF in UF2, obtaining the highest best value. The 

dominance of EMOGWO-ADTLF continues in both UF3 AND UF4, obtaining the highest 

scores in average, median and best values. DCMOGWO outperforms MOGWO and NSGWO 

in the two test problems. NSGWO also covers the objective space effectively in UF5 and UF6. 

It obtains the highest HV values in four of the performance metrics in both functions. In UF7 

and UF8, EMOGWO-ADTLF again shows dominant performance in the performance metrics. 

It also indicates the strength of EMOGWO-ADTLF in handling complex problems more 

effectively. The performance of EMOGWO-ADTLF in these test functions is followed by 

NSGWO.MOGWO and DCMOGWO are the worst performing algorithms in UF7 and UF8 

respectively. 

EMOGWO-ADTLF more often performs better than other algorithms in terms of HV, 

obtaining the highest or near-highest HV values. It also gives competitive standard deviation 

values. This shows how effective EMOGWO-ADTLF covers the objective space and is a good 

algorithm for different optimization problems. NSGWO also performs well in certain functions, 

but its performance fluctuates depending on the problem being considered. 
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Table 3. Analysis of IGD Values 

FUNCT- 

ION 

STATI- 

STICS 

EMOGWO-

ADTLF 

MOGWO NSGWO DCMOGWO 

 

 

 

UF1 

 

 

 
 

AVG 5.7969E-02 7.1311E-02 7.9473E-02 6.7857E-02 

MDN 5.7273E-02 8.4320E-02 7.6504E-02 6.5035E-02 

SD 1.4157E-02 2.0105E-02 4.7193E-03 1.4144E-02 

BS 4.0989E-02 4.2911E-02 7.5781E-02 5.2119E-02 

WS 7.5646E-02 8.6701E-02 8.6134E-02 8.6418E-02  
          

 

 

 

UF2 

 

 

 
 

AVG 3.3437E-02 4.5888E-02 3.2598E-02 4.1171E-02 

MDN 3.2656E-02 4.5811E-02 3.2813E-02 4.1180E-02 

SD 1.7721E-03 2.3011E-03 3.1591E-04 2.9645E-04 

BS 3.1764E-02 4.3109E-02 3.2151E-02 4.0804E-02 

WS 3.5889E-02 4.8744E-02 3.2829E-02 4.1530E-02  
          

 

 

 

UF3 

 

 

 
 

AVG 2.8641E-01 3.4817E-01 3.8643E-01 3.0021E-01 

MDN 3.2332E-01 3.4253E-01 3.8653E-01 3.2333E-01 

SD 5.9279E-02 1.1552E-02 6.7217E-04 3.3181E-02 

BS 2.0276E-01 3.3771E-01 3.8556E-01 2.5329E-01 

WS 3.3313E-01 3.6427E-01 3.8720E-01 3.2402E-01  
          

 

 

 

UF4 

 

 

 
 

AVG 4.9430E-02 5.8564E-02 6.9335E-02 5.1609E-02 

MDN 4.9253E-02 5.3530E-02 6.5971E-02 5.1530E-02 

SD 1.1361E-03 1.0918E-02 7.1741E-03 9.7808E-04 

BS 4.8136E-02 4.8441E-02 6.2727E-02 5.0453E-02 

WS 5.0902E-02 7.3722E-02 7.9306E-02 5.2845E-02  
          

 

 

 

UF5 

 

 

 
 

AVG 4.7367E-01 4.7994E-01 1.7046E+00 5.4062E-01 

MDN 5.3407E-01 5.2411E-01 1.7113E+00 5.2327E-01 

SD 1.4897E-01 1.1658E-01 1.0118E-02 9.8080E-02 

BS 2.6869E-01 3.2030E-01 1.6903E+00 4.3011E-01 

WS 6.1826E-01 5.9541E-01 1.7122E+00 6.6847E-01  
          

 

 

 

UF6 

 

 

 
 

AVG 6.5347E-01 5.7803E-01 2.0821E-01 4.4295E-01 

MDN 6.5014E-01 5.8364E-01 1.7291E-01 4.3031E-01 

SD 4.1635E-02 7.9377E-02 5.7970E-02 1.0207E-01 

BS 6.0423E-01 4.7813E-01 1.6178E-01 3.2474E-01 

WS 7.0605E-01 6.7232E-01 2.8994E-01 5.7380E-01  
          

 

 

 

UF7 

 

 

 
 

AVG 4.2915E-02 1.4181E-01 5.7573E-02 6.1463E-02 

MDN 4.7423E-02 6.8108E-02 5.7461E-02 6.3971E-02 

SD 9.0520E-03 1.1060E-01 1.0112E-02 7.8416E-03 

BS 3.0284E-02 5.9182E-02 4.5245E-02 5.0854E-02 

WS 5.1036E-02 2.9813E-01 7.0013E-02 6.9564E-02  
          

 

 

 

UF8 

 

 

 
 

AVG 1.6637E-01 9.1158E-01 1.5490E-01 1.3326E+00 

MDN 1.6880E-01 9.1806E-01 1.5476E-01 9.1289E-01 

SD 1.1489E-02 2.6171E-02 1.3674E-03 6.4448E-01 

BS 1.5124E-01 8.7678E-01 1.5329E-01 8.4183E-01 

WS 1.7906E-01 9.3990E-01 1.5663E-01 2.2431E+00 
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Table 4. Analysis of HV Values 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 

MOGWO NSGWO DCMOGWO 

 

 

UF1 

AVG 1.0012E+00 9.6216E-01 9.6603E-01 9.7232E-01 

MDN 1.0095E+00 9.4560E-01 9.6965E-01 9.7123E-01 

SD 2.5703E-02 2.9627E-02 5.8174E-03 1.8139E-02 

BS 1.0278E+00 1.0038E+00 9.7063E-01 9.9507E-01 

WS 9.6647E-01 9.3711E-01 9.5783E-01 9.5068E-01  

 

 

UF2 

AVG 1.0539E+00 1.0317E+00 1.0516E+00 5.9579E-01 

MDN 1.0550E+00 1.0286E+00 1.0543E+00 5.9458E-01 

SD 1.9074E-03 6.0224E-03 4.9418E-03 1.7843E-03 

BS 1.0554E+00 1.0402E+00 1.0558E+00 5.9831E-01 

WS 1.0512E+00 1.0264E+00 1.0446E+00 5.9448E-01  

 

 

UF3 

AVG 6.3035E-01 5.1864E-01 4.4334E-01 6.1075E-01 

MDN 5.6133E-01 5.2197E-01 4.4324E-01 5.6512E-01 

SD 1.0299E-01 9.8704E-03 4.8824E-04 6.6666E-02 

BS 7.7593E-01 5.2871E-01 4.4398E-01 7.0501E-01 

WS 5.5379E-01 5.0523E-01 4.4279E-01 5.6211E-01  

UF4 AVG 6.7915E-01 6.6562E-01 6.6183E-01 6.7300E-01 

MDN 6.7905E-01 6.7018E-01 6.6571E-01 6.7250E-01 

SD 2.2381E-03 1.3642E-02 7.6380E-03 1.2247E-03 

BS 6.8195E-01 6.7958E-01 6.6862E-01 6.7400E-01 

WS 6.7647E-01 6.4711E-01 6.5116E-01 6.7100E-01  

 

 

UF5 

AVG 7.6565E-01 8.8663E-01 1.4245E+00 6.7332E-01 

MDN 6.3858E-01 8.7735E-01 1.4244E+00 7.7173E-01 

SD 3.1557E-01 1.2209E-01 1.4060E-01 1.5154E-01 

BS 1.1997E+00 1.0406E+00 1.5968E+00 7.8899E-01 

WS 4.5868E-01 7.4196E-01 1.2524E+00 4.5925E-01  

 

 

UF6 

AVG 5.0265E-01 5.6163E-01 1.2720E+00 7.9419E-01 

MDN 5.1714E-01 5.1641E-01 1.3061E+00 7.4149E-01 

SD 2.4046E-02 6.8006E-02 6.2818E-02 1.1729E-01 

BS 5.2205E-01 6.5775E-01 1.3259E+00 9.5675E-01 

WS 4.6876E-01 5.1073E-01 1.1839E+00 6.8433E-01       

 

 

UF7 

AVG 8.6040E-01 7.3017E-01 8.4892E-01 8.2923E-01 

MDN 8.5256E-01 8.1323E-01 8.4898E-01 8.2506E-01 

SD 1.6666E-02 1.2832E-01 2.4668E-02 1.1276E-02 

BS 8.8357E-01 8.2836E-01 8.7910E-01 8.4465E-01 

WS 8.4506E-01 5.4891E-01 8.1867E-01 8.1799E-01  

 

 

UF8 

AVG 2.4020E+00 1.0239E+00 2.2615E+00 4.4310E-01 

MDN 2.4011E+00 1.0425E+00 2.2783E+00 2.8703E-01 

SD 3.2163E-02 5.6601E-02 4.5080E-02 4.3959E-01 

BS 2.4419E+00 1.0820E+00 2.3063E+00 1.0423E+00 

WS 2.3631E+00 9.4713E-01 2.1998E+00 0.0000E+00 
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4.2. Analysis of EMOGWO-ADTLF against Other Multi-Objective Optimizers 

 

Table 5 presents the results of IGD values. EMOGWO-ADTLF dominates other 

algorithms in UF1 and UF2 functions. It achieves the lowest IGD value in terms of average, 

median, best and worst values. It also gives the lowest standard deviation value for UF2. In 

UF3, MODA outperforms all the algorithms, obtaining the best value in terms of average, 

median, standard deviation and worst scores. MOALO and EMOGWO-ADLLF provide 

competitive scores with MMA trailing all algorithms. EMOGWO-ADTLF obtains the lowest 

values in all the statistical metrics in UF4, showing more diversity and convergence in this 

problem. For the UF5, EMOGWO-ADTLF has the best values in overall best and average 

values. MOALO provides competitive performance, achieving the lowest median and worst 

value. MODA has the lowest standard deviation for this function. MOALO is the most dominant 

algorithm in the UF6 function. It has the best values for four of the metrics, including average 

values. EMOGWO-ADTLF again has the lowest values for all the performance metrics in UF7 

and UF8. This is a clear indication of the ability of EMOGWO-ADTLF to approximate the 

Pareto fronts and provide a balance between exploitation and exploration in complex problems.  

In all the IGD values, EMOGWO-ADTLF emerges as the top performer in most of the 

functions. It highlights the algorithm’s effectiveness, efficiency, diversity and adaptability in 

different problems. The other algorithms also show competitiveness in a few test problems. 

MODA’s overall performance is better than MOALO and MMA. 

The analysis of HV values is shown in Table 6.  In the UF1 and UF2 functions, 

EMOGWO-ADTLF has the highest values in average, median, best and worst values. It also 

has the best standard deviation value. This proves that EMOGWO-ADTLF has the best 

coverage and spread for these functions. MODA is the second-best performer for UF1 function 

with MOALO providing competitive performance to EMOGWO-ADTLF in UF2. MODA has 

dominant performance in the UF3 function, showing its ability to cover the objective space 

more effectively. The performance of MODA in UF3 is followed by MOALO and EMOGWO-

ADTLF. EMOGWO-ADTLF again outperforms all the other algorithms in UF4. The second-

best performer for this test function is MODA. In UF5 and UF6, MOALO is the top performer 

in terms of HV values. It has the best average, median and worst values. Its overall highest 

average value suggests that it effectively occupies the objective space. The performance of 

MOALO in test function UF5 is closely followed by EMOGWO-ADTLF. EMOGWO-ADTLF 

has the highest values in all the statistical metrics for test functions UF7 and UF8. This is an 

indication of the algorithm’s ability to produce solutions that cover the objective space. The 

performance is also a proof of the algorithm to perform in complex and high-dimension 

problems. MODA’s performance in these two test functions is better than MMA and MOALO.  

In the HV analysis, EMOGWO-ADTLF obtained the best HV value in most of the test 

functions. It indicates the effectiveness of EMOGWO-ADTLF. It can produce diverse and 

quality solutions, with effective distribution in the objective space. 
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Table 5. Analysis of IGD Values 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 

MMA MOALO MODA 

 

 

UF1 

  

  

  

  

AVG 5.7969E-02 5.0362E-01 1.2529E-01 8.0228E-02 

MDN 5.7273E-02 3.6851E-01 1.2531E-01 7.6724E-02 

SD 1.4157E-02 2.0709E-01 5.0827E-03 5.6834E-03 

BS 4.0989E-02 3.4614E-01 1.1906E-01 7.5715E-02 

WS 7.5646E-02 7.9621E-01 1.3151E-01 8.8244E-02 

  

  

  

  

  

  

 

 

UF2 

  

  

  

  

AVG 3.3437E-02 4.6596E-01 1.0055E-01 1.3648E-01 

MDN 3.2656E-02 4.8933E-01 9.5645E-02 1.5505E-01 

SD 1.7721E-03 4.6445E-02 8.2915E-03 5.5666E-02 

BS 3.1764E-02 4.0111E-01 9.3785E-02 6.0944E-02 

WS 3.5889E-02 5.0743E-01 1.1223E-01 1.9345E-01 

  

  

  

  

  

  

 

 

UF3 

  

  

  

  

AVG 2.8641E-01 4.9969E-01 2.2076E-01 1.6356E-01 

MDN 3.2332E-01 3.6962E-01 2.5563E-01 1.5164E-01 

SD 5.9279E-02 2.0679E-01 7.3376E-02 2.3194E-02 

BS 2.0276E-01 3.3789E-01 1.1869E-01 1.4306E-01 

WS 3.3313E-01 7.9157E-01 2.8797E-01 1.9599E-01 

  

  

  

  

  

  

 

 

UF4 

  

  

  

  

AVG 4.9430E-02 4.0835E-01 1.2166E-01 9.0255E-02 

MDN 4.9253E-02 4.3332E-01 1.2421E-01 8.5741E-02 

SD 1.1361E-03 1.4044E-01 1.3229E-02 9.3001E-03 

BS 4.8136E-02 2.2522E-01 1.0433E-01 8.1813E-02 

WS 5.0902E-02 5.6650E-01 1.3643E-01 1.0321E-01 

  

  

  

  

  

  

 

 

UF5 

  

  

  

  

AVG 4.7367E-01 6.7863E-01 4.7680E-01 7.0163E-01 

MDN 5.3407E-01 7.8823E-01 4.4111E-01 7.1891E-01 

SD 1.4897E-01 1.9160E-01 1.0164E-01 5.1014E-02 

BS 2.6869E-01 4.0923E-01 3.7405E-01 6.3233E-01 

WS 6.1826E-01 8.3844E-01 6.1523E-01 7.5365E-01 

  

  

  

  

  

  

 

 

UF6 

  

  

  

  

AVG 6.5347E-01 7.6945E-01 3.7119E-01 4.7254E-01 

MDN 6.5014E-01 8.5334E-01 3.5630E-01 4.3815E-01 

SD 4.1635E-02 2.2029E-01 6.3267E-02 4.9282E-02 

BS 6.0423E-01 4.6767E-01 3.0223E-01 4.3723E-01 

WS 7.0605E-01 9.8734E-01 4.5504E-01 5.4223E-01 

            

 

 

UF7 

  

  

  

  

AVG 4.2915E-02 4.5262E-01 1.8774E-01 6.8319E-02 

MDN 4.7423E-02 4.6748E-01 1.8716E-01 6.3320E-02 

SD 9.0520E-03 3.2862E-02 2.1535E-02 1.1269E-02 

BS 3.0284E-02 4.0706E-01 1.6166E-01 5.7714E-02 

WS 5.1036E-02 4.8333E-01 2.1440E-01 8.3923E-02 

            

 

 

UF8 

  

  

  

  

AVG 1.6637E-01 6.1608E-01 5.9863E-01 2.8547E-01 

MDN 1.6880E-01 6.0978E-01 6.1293E-01 3.1074E-01 

SD 1.1489E-02 1.0405E-02 3.6773E-02 3.7108E-02 

BS 1.5124E-01 6.0772E-01 5.4818E-01 2.3300E-01 

WS 1.7906E-01 6.3075E-01 6.3479E-01 3.1266E-01 
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Table 6. Analysis of HV Analysis 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTFL 

MMA MOALO MODA 

UF1 

  

  

  

  

AVG 1.0012E+00 5.0912E-01 8.9127E-01 9.5553E-01 

MDN 1.0095E+00 5.5278E-01 9.0266E-01 9.6276E-01 

SD 2.5703E-02 1.5508E-01 2.1287E-02 1.0963E-02 

BS 1.0278E+00 6.7343E-01 9.0971E-01 9.6380E-01 

WS 9.6647E-01 3.0116E-01 8.6144E-01 9.4004E-01 

  

  

  

  

  

  

 

 

UF2 

  

  

  

  

AVG 1.0539E+00 6.3847E-01 9.3339E-01 8.8999E-01 

MDN 1.0550E+00 6.3588E-01 9.4018E-01 8.7718E-01 

SD 1.9074E-03 2.2371E-02 1.5247E-02 8.5429E-02 

BS 1.0554E+00 6.6707E-01 9.4771E-01 1.0004E+00 

WS 1.0512E+00 6.1246E-01 9.1227E-01 7.9236E-01 

  

  

  

  

  

  

 

 

UF3 

  

  

  

  

AVG 6.3035E-01 5.1276E-01 7.5304E-01 8.3905E-01 

MDN 5.6133E-01 5.5765E-01 6.8235E-01 8.6249E-01 

SD 1.0299E-01 1.5291E-01 1.1236E-01 5.2533E-02 

BS 7.7593E-01 6.7351E-01 9.1163E-01 8.8839E-01 

WS 5.5379E-01 3.0711E-01 6.6512E-01 7.6628E-01 

  

  

  

  

  

  

 

 

UF4 

  

  

  

  

AVG 6.7915E-01 2.4300E-01 5.3547E-01 6.0787E-01 

MDN 6.7905E-01 1.9718E-01 5.2094E-01 6.1510E-01 

SD 2.2381E-03 7.5948E-02 2.6513E-02 1.8308E-02 

BS 6.8195E-01 3.5004E-01 5.7267E-01 6.2578E-01 

WS 6.7647E-01 1.8178E-01 5.1280E-01 5.8272E-01 

  

  

  

  

  

  

 

 

UF5 

  

  

  

  

AVG 7.6565E-01 4.3639E-01 8.0392E-01 3.4721E-01 

MDN 6.3858E-01 2.7468E-01 9.0798E-01 3.5879E-01 

SD 3.1557E-01 2.6200E-01 1.4734E-01 7.9437E-02 

BS 1.1997E+00 8.0596E-01 9.0822E-01 4.3819E-01 

WS 4.5868E-01 2.2854E-01 5.9556E-01 2.4464E-01 

  

  

  

  

  

  

 

 

UF6 

  

  

  

  

AVG 5.0265E-01 3.9110E-01 8.4325E-01 7.4843E-01 

MDN 5.1714E-01 1.4209E-01 8.5421E-01 8.4941E-01 

SD 2.4046E-02 3.9479E-01 8.2956E-02 1.4449E-01 

BS 5.2205E-01 9.4837E-01 9.3892E-01 8.5178E-01 

WS 4.6876E-01 8.2837E-02 7.3661E-01 5.4410E-01 

  

  

  

  

  

  

 

 

UF7 

  

  

  

  

AVG 8.6040E-01 4.2255E-01 6.5250E-01 7.9854E-01 

MDN 8.5256E-01 4.0710E-01 6.6287E-01 8.0661E-01 

SD 1.6666E-02 2.6991E-02 4.7455E-02 2.3511E-02 

BS 8.8357E-01 4.6050E-01 7.0474E-01 8.2244E-01 

WS 8.4506E-01 4.0005E-01 5.8990E-01 7.6657E-01 

            

 

 

UF8 

  

  

  

  

AVG 2.4020E+00 1.0252E+00 1.0918E+00 1.6236E+00 

MDN 2.4011E+00 1.0421E+00 9.4338E-01 1.5231E+00 

SD 3.2163E-02 5.3716E-02 2.1962E-01 3.0756E-01 

BS 2.4419E+00 1.0809E+00 1.4023E+00 2.0404E+00 

WS 2.3631E+00 9.5263E-01 9.2974E-01 1.3074E+00 
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4.3. Summary of IGD and HV Values for Test Function UF1 to UF8 

 

In this section, average IGDs and HVs are used to rank all algorithms. The use of 

average values for ranking provides the overall performance of the algorithms. It is the 

statistical measure that gives a clear indication of an algorithm’s convergence towards the 

Pareto solutions. It also provides details about the efficiency, spread coverage and diversity of 

an algorithm. Tables 7 and 8 provide the average IGD and HV values of all the algorithms used 

in this study.   

EMOGWO-ADTLF shows consistently high performance in IGD and HV values. It 

ranks first in both performance metrics with overall rank scores of 17 and 18 in terms of IGD 

and HV values respectively. For IGD values, NSGWO and DCMOGWO placed second and 

third positions with overall rank scores of 26 and 28. MMA is the worst performing algorithm.  

NSGWO and MOGWO are the second and third best algorithms for the HV values ranking. 

MMA again is the worst performing algorithm in the HV score ranking with MOALO and 

DCMOGWO placing fourth.  

In general, EMOGWO-ADTLF dominates both IGD and HV values. This shows that 

EMOGWO-ADLF has the best diversity, convergence and coverage among all the algorithms. 

The best diversity proves the ability of the algorithm to balance between exploitation and 

exploration in most of the functions. The variability of the other algorithms across the test 

function shows that their performances depend on the problem being analysed. The consistently 

low performance of MMA is a sign that it needs to be improved to be able to correctly 

approximate the Pareto fronts. 

 

Table 7. Ranking of IGD Values 

FUNCT-

ION 

EMOGWO

-ADTLF 

MOGW

O 

NSGW

O 

DCMOG

-WO 

MMA MOAL

O 

MODA 

UF1 1 3 4 2 7 6 5 

UF2 2 4 1 3 7 5 6 

UF3 3 5 6 4 7 2 1 

UF4 1 3 4 2 7 6 5 

UF5 1 3 7 4 5 2 6 

UF6 6 5 1 3 7 2 4 

UF7 1 5 2 3 7 6 4 

UF8 2 6 1 7 5 4 3 

TOTAL 17 34 26 28 52 33 34 

TOTAL 

RANK 

1 5 2 3 7 4 5 
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Table 8. Ranking of HV Values

FUNCT-

ION 

EMOGWO

-ADTFL 

MOGW

O 

NSGW

O 

DCMOG

-WO 

MMA MOAL

O 

MODA 

UF1 1 2 4 2 7 6 5 

UF2 1 3 2 7 6 4 5 

UF3 3 5 7 4 6 2 1 

UF4 1 3 4 2 7 6 5 

UF5 4 2 1 5 6 3 7 

UF6 6 5 1 3 7 2 4 

UF7 1 5 2 3 7 6 4 

UF8 1 6 2 7 5 4 3 

TOTAL 18 31 23 33 51 33 34 

TOTAL 

RANK 

1 3 2 4 7 4 6 

 

4.4. Wilcoxon Signed-Rank Test on Average IGD Values 

 

The Wilcoxon signed-rank test was employed to assess whether the optimization 

performance of EMOGWO-ADTLF is statistically different from other algorithms. The test 

was conducted at a significance level of 0.05. The data used for the test were obtained from 

Tables 3 and 5, and the outcomes are summarized in Table 7. In this table, R+ represents the 

sum of ranks for positive differences, and R− represents the sum of ranks for negative 

differences. The n/w/l/t column provides the following information: n is the total number of test 

functions considered, w is the number of functions where EMOGWO-ADTLF outperformed 

the compared algorithm, t is the number of functions where both algorithms exhibited 

equivalent performance, and l is the number of functions where EMOGWO-ADTLF 

underperformed the compared algorithm.  

The results of the test are presented in Table 9. The results reveal that the p-value for the 

comparison between EMOGWO-ADTLF and MMA is 0.00781, below the significance level 

of 0.05. This indicates that EMOGWO-ADTLF exhibits a statistically significant performance 

improvement compared to MMA across the test functions. On the other hand, the p-values for 

the comparisons with MOGWO, NSGWO, DCMOGWO, MOALO, and MODA are above the 

significance level of 0.05, suggesting that the differences in performance between EMOGWO-

ADTLF and these algorithms are not statistically significant. However, an examination of the 

n/w/l/t column reveals that EMOGWO-ADTLF outperformed MOGWO in 7 out of 8 functions, 

NSGWO in 5 out of 8 functions, DCMOGWO in 7 out of 8 functions, MOALO in 6 out of 8 

functions, and MODA in 6 out of 8 functions. These results demonstrate that while the 
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differences may not be statistically significant, EMOGWO-ADTLF exhibits superior 

optimization performance compared to these algorithms in most of the test functions. 

 

Table 9. Wilcoxon Signed-Ranked Test of IGD Values 

 Algorithms R+ R- p-value n/w/l/t Significant? 

EMOGWO-ADTLF vs MOGWO 30 6 0.1094 8/7/1/0 No 

EMOGWO-ADTLF vs NSGWO 26 10 0.3125 8/5/3/0 No 

EMOGWO-ADTLF vs DCMOGWO 29 7 0.1484 8/7/1/0 No 

EMOGWO-ADTLF vs MMA 36 0 0.00781 8/8/0/0 Yes 

EMOGWO-ADTLF vs MOALO 29 7 0.25 8/6/2/0 No 

EMOGWO-ADTLF vs MODA 23 13 0.5469 8/6/2/0 No 

 

4.5. Analysis of Algorithms Using Real-World Engineering Problems 

 

The test for diversity, convergence, and coverage of EMOGWO-ADTLF is 

determined in this section. The IGD and HV values are compared with three well known 

algorithms in Engineering applications namely MMA, MOALO and MODA. For each 

engineering problem, the Pareto front is determined by combining the obtained solutions from 

all algorithms into one dataset and performing non-dominated sorting, using Python package 

DEAP.  Tables 10 and 11 present the IGD and HV analysis for the Welded Beam and Disc 

Brake Engineering Designs respectively. 

For the IGD analysis, EMOGWO-ADLLF dominates in both design problems, 

obtaining the lowest overall average values. EMOGWO-ADTLF also obtains the best values 

in three statistical metrics for the HV analysis for both problems. EMOGWO-ADTLF shows 

high diversity, coverage and convergence for these engineering problems. The results suggest 

that EMOGWO-ADTLF can maintain a balance between exploration and exploitation in real-

world constrained Engineering problems. MMA shows an improvement in its performance in 

the unconstrained test functions. This indicates that MMA can be useful in engineering 

applications. 

 

Table 10. IGD Values of Engineering Problems 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 
MMA MODA MOALO 

Welded 

Beam 

Design 

AVG 3.7400E-03 4.1674E-03 4.0994E-03 3.8535E-03 

MDN 3.7936E-03 4.3654E-03 4.2613E-03 3.8507E-03 

SD 1.3111E-04 3.2143E-04 4.4301E-04 7.8066E-04 

BS 3.5594E-03 3.7140E-03 3.4943E-03 2.8988E-03 

WS 3.8669E-03 4.4227E-03 4.5426E-03 4.8110E-03 
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FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 
MMA MODA MOALO 

Disc Brake 

Design 

AVG 1.8066E-03 1.8816E-03 2.0188E-03 1.8899E-03 

MDN 1.7089E-03 1.9505E-03 1.9902E-03 1.7166E-03 

SD 1.4200E-04 1.0507E-04 1.6469E-04 1.1086E-04 

BS 1.7034E-03 1.7331E-03 1.8329E-03 1.7087E-03 

WS 2.0074E-03 1.9611E-03 2.1032E-03 2.2445E-03 

 

Table 11. HV Values of Engineering Problems 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTFL 
MMA MODA MOALO 

Welded 

Beam 

Design 

AVG 5.7618E-01 5.6272E-01 4.6346E-01 5.7011E-01 

MDN 5.7012E-01 5.6783E-01 4.6209E-01 5.6510E-01 

SD 4.5864E-02 8.5084E-03 7.7780E-03 7.8335E-03 

BS 6.3514E-01 5.6960E-01 4.7360E-01 5.8117E-01 

WS 5.2329E-01 5.5073E-01 4.5469E-01 5.6405E-01 

           

Disc 

Brake 

Design 

AVG 4.1770E+01 4.1309E+00 3.8351E+01 3.0851E+01 

MDN 4.1531E+01 4.1305E+00 3.8949E+01 3.0879E+01 

SD 7.5412E-01 1.6374E-02 9.1732E-01 8.2573E+00 

BS 4.2790E+01 4.1512E+00 3.9049E+01 4.0950E+01 

WS 4.0990E+01 4.1111E+00 3.7055E+01 2.0724E+01 

 

 

5. CONCLUSION  

 

 This study has developed an enhanced MOGWO using adaptive population parameter 

tuning and levy flight theories. It solves issues in multi-objective optimization including 

parameter tuning.  The analysis of IGD and HV values of EMOGWO-ADTLF across different 

test functions and engineering design problems shows its dominance over existing nature-

inspired algorithms. EMOGWO-ADTLF ranks first in both IGD and HV values when 

compared to MOGWO, NSGWO, DCMOGWO, MMA, MOALO and MODA. This 

demonstrates the ability of the proposed algorithm to correctly approximate the Pareto fronts 

and cover the objective space. This indicates that EMOGWO-ADTLF outperforms all other 

algorithms in terms of diversity, convergence, and coverage. Its superior diversity 

demonstrates the algorithm's capability to effectively balance exploration and exploitation.  

The work shows the potency of adaptive diversity approaches and Levy flight theories in 

developing robust algorithms for complex real-world problems. It offers a robust tool for 
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solving complex multi-objective problems with improved parameter tuning. Future Studies 

should concentrate on the scalability of the MOGWO algorithm. 
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Abstract: The vision of creating this device was to ease the work of the people who would 

be responsible for the physical recording of the temperature of the people in an enclosure or 

a specific space, such as a medical office, for example, the pulse and the amount of oxygen 

in the blood by replacing the human resource with a device that takes all three with the help 

of sensors and not only that, it sends the data taken by them to some tables in the related 

database, after which it creates statistical graphs with them. Pulse, blood oxygen and body 

temperature measurement system with internet data monitoring has in the component sensors 

MLX90614 for remote body temperature recording, sensor that was connected to ESP32 

microcontroller, using I2C communication protocol and MAX30100, which we used to 

measure pulse and blood oxygen level (SpO2), being connected to another microcontroller, 

Arduino Uno, also via I2C. What has been measured is displayed on an LCD2004, and the 

data is transmitted wireless to the local server, in the database created in MySQL. 

 

 

 

1. INTRODUCTION 

 

The solution to help restore day-to-day peace or confidence that we are safe is more 

thorough monitoring of the health of vulnerable people and more, with constant access to 

recorded data via the Internet. To put the solution into practice, we created a system to monitor 

https://doi.org/10.34302/CJEE/PNLK5679


Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

37 

vital functions, such as pulse and blood oxygen level (SpO2), but also body temperature, with 

the help of two sensors and other components presented in the paper.  

The components needed to make this Pulse, blood oxygen and body temperature 

measurement system with internet data monitoring are: ESP32, Arduino Uno, Pulse and SpO2 

Sensor, Temperature Sensor, LCD Display 2004, Voltage Level Regulator, Arduino IDE. 

 

 

2. COMPONENTS USED, CONSTRUCTION AND OPERATION 

 

We used two microcontrollers (ESP32 and Arduino Uno), 3 sensors (MLX90614 for 

temperature, GY MAX30100 and RCWL 0530 for pulse and oximeter), an LCD display, an 

I2C interface module and a logic level converter, as well as software, through which the 

programming of the components, the connections both serial and wireless, the database and 

tables in it were made.  

In the block diagram below, you can see the block diagram of the system (Fig.1). 

 

 

Fig.1 The block diagram 

 

2.1. The ESP32 development board 

 

The ESP32 development board is a microcontroller, system-on-a-chip (SoC) 

manufactured by Espressif Systems, with an Xtensa LX6 architecture (Fig. 2). It is increasingly 

used in various systems and its popularity has increased in recent years due to its low price, 

generous capacity, small size, integrating Wi-Fi and Bluetooth (higher versions) wireless 
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communication interfaces. I would call this microcontroller the "brain" of the project because 

it manages the data received by the sensors, as well as sending them to the database tables, also 

controlled by the ESP32 board. 

 

2.2. Arduino Uno development board 

 

The Arduino Uno is a microcontroller that uses the ATmega328P microchip and was 

developed by AVR Arduino.cc. The year of appearance was 2010. The board is equipped with 

sets of input/output (I/O) pins, digital and analog channels, which can be interfaced with various 

expansion boards (shields) and other circuits (Fig.3). 

 

 
 

 

Fig.2 ESP2 microcontroller 

 

       Fig. 3 Arduino Uno 

 

2.3. The MLX90614 sensor 

 

The MLX90614 is an infrared thermometer module used to measure temperature 

without direct contact with the skin. The temperature resolution is approximately 0.02°C 

(Fig.4). It is configured with 10-bit PWM, which will transmit a temperature rate continuously 

in the range of -20 - +120°C with increased resolution. The angle from which the measurement 

perspective is most accurate is 90° at a distance of 1cm. 

 

                     

Fig. 4 MLX90614 Infrared Temperature Sensor 
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2.4. TheMAX30100 sensor 

 

The MAX30100 optical sensor is intended to monitor heart rate and record blood 

oxygen (SpO2). Its composition includes: the photodetector, LEDs and optical elements. In 

order not to be affected by ambient light, the sensor features low-noise electronics (Fig. 5). 

 

                  

(a)                                                              (b) 

Fig. 5 MAX30100: a-GY MAX30100;b-RCWL 0530 

 

2.5. Display LCD 20-04  

 

This alphanumeric LCD display is used to display symbols, letters and numbers in a 

total of 80 characters, which can be divided into 4 lines (20 characters/line) (Fig.6). It features 

an HD44780 chip and has a working voltage of 5V. The command can be done in parallel on 4 

or 8 bits or through I2C communication, for which I also used an I2C adapter module (for 16x2 

or 20x4 LCDs). Also, the display can be placed in less lit areas, the screen having an adjustable 

brightness by means of a potentiometer also present on the I2C adapter. 

  

 

Fig. 6 LCD display 

 

2.6. I2C adapter for LCD 

 

We used this I2C adapter module to reduce the number of pins used by the 20x4 

(originally parallel) LCD display on the ESP32, the development board used for the project. 
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The module attaches directly to the screen, and after that, the only wires we need are SCL and 

SDA – the clock and data signals, specific to I2C communication. The adapter also features a 

potentiometer that can be used to adjust the backlight intensity and contrast on the LCD screen 

(Fig.7). 

 

              
Fig. 7 I2C adapter module 

 

2.7. Logic level converter (level shifter) 

 

The logic level translator module connects components or devices that use different 

voltages, such as 1.8V, 2.5V, 3.3V or 5V, adjusting the voltage and bringing it to the same level 

so that they can work together. If we try to make a system with two or more devices that 

communicate on other voltage levels, such as between development boards, sensors, 

microcontrollers, other modules, for example Wi-Fi or Bluetooth, this level shifter solves the 

voltage differences that arise (Fig.8). 

 

 

 

Fig. 8 Logic level converter 

 

Fig. 9 New Arduino Sketch 
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2.8. Arduino IDE 

 

Arduino Integrated Development Environment - or Arduino Software (IDE) - is the 

environment in which the programming of the components and the communication between 

them was carried out. Uploading programs to the Arduino and ESP32 boards was done via 

appropriate USB cables. Arduino uses a variant of the C++ programming language. Other 

methods and special functions from other files have been added to it to make the program easier 

to use for more users. 

 

2.9. XAMPP, MySQL and phpMyAdmin 

 

XAMPP is a free package and an easily accessible and modifiable web server platform 

developed by Apache Friends, which mainly contains the Apache HTTP server, the MariaDB 

database, and readers for script files written in the PHP and Perl programming languages. To 

run any PHP program, I needed Apache or MYSQL databases, both of which are supported by 

XAMPP. MySQL is a database management system. I also needed the free phpMyAdmin 

software tool, also described in the PHP language, intended to deal with the administration of 

the database created in MySQL online. 

 

2.10 Measurement of blood oxygen level and pulse measurement 

 

When a person touches a pulse oximeter, light from the device passes through the blood 

in the fingers. The amount of oxygen is calculated analogically according to changes in light 

absorption from both oxygenated, inspired blood and deoxygenated, expired blood (Fig.10). 

The MAX30100 sensor consists of two LEDs (red and IR) and a photodiode. Both LEDs are 

used to measure SpO2. They emit light at different wavelengths, ~640nm for the red LED and 

~940nm for the IR LED. At these wavelengths, oxygenated and deoxygenated hemoglobin have 

very different absorption properties. Oxygenated hemoglobin absorbs more infrared light and 

reflects red light, while deoxygenated hemoglobin absorbs more red light and reflects infrared 

light. The reflected light is measured by the photodetector. The MAX30100 sensor reads these 

different absorption levels to find the blood oxygen concentration (SPO2). The ratio of IR to red 

light received by the photodetector gives us the oxygen concentration in the blood. Only the IR 

LED is needed to measure the heart rate. The heart rate is the ratio of time between two 

consecutive beats. The altered capillary tissue volume affects the sensor's infrared light, which 

transmits particles after each heartbeat. In other words, when a finger is placed in front of this 

sensor, the reflection of the infrared light is changed according to the volume change of the 

blood inside the capillary vessels. 
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Fig.10 SpO2 measurement 

 

3. INSTALLATION OF THE SYSTEM 

 

3.1. Installing ESP board package in Arduino IDE 

 

To start testing the functionality of the components one by one, and then them 

programming, we first needed to be able to choose the ESP32 microcontroller from the top left 

menu bar of the Arduino IDE interface, from the "Tools" - "Board" button. 

Step 1: File> Preferences 

 

  

Fig. 11 Installing 

ESP32 in Arduino 

IDE step 1 

 

Fig. 12 Installing ESP32 in Arduino IDE step 2 

 

Step 2: We inserted the ESP package link from github in the field shown in Fig. 12 

Step 3: Tools> Board> Boards Manager 

Step 4: We typed in the corresponding field "ESP32", and after the search engine found the 

package "esp32 by Espressif Systems", we pressed "Install", as can also be observed in Fig. 14 
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Fig. 13 Installing ESP32 in Arduino IDE step 3 

 

 

Fig. 14 Installing ESP32 in Arduino IDE step 4 

 

Step 5: Choose the right board and start programming 

 

Fig. 15 Installing ESP32 in Arduino IDE step 5 
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3.2. ESP32 and Arduino Uno Programming 

 

3.2.1 LCD + Adaptor I2C with ESP32 

 To facilitate the use of the display, which initially uses 16 pins, we opted for the 

purchase of a special I2C adapter module for this type of display. The LCD component used in 

the project was the one with 20 characters arranged on 4 lines. Using the module, we reduce 

the number of pins to 4 and now the display will use I2C communication with the ESP32 board, 

through the data and clock pins, SDA and SCL, plus the power, Vcc and GND pins. The adapter 

was soldered to the LCD by tinning in the faculty lab as seen in Fig. 16. 

 

 
Fig. 16 Tinning the I2C adapter to the LCD display 

 

Next came testing them by compiling and deploying a simple program on the ESP32 

(Fig.17). 

 

Fig. 17 Testing the display with ESP32 via I2C 

 

3.2.2 MLX90614 temperature sensor with ESP32 

 

Next, we connected the MLX90614 temperature sensor to the ESP32. The first time to 

be able to compile the program, we needed the library belonging to the sensor where the 
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libraries, special functions, definition of registers, pins, and other predefined elements are 

located (Fig.18, Fig.19). 

 

 

Fig. 18 Installing the MLX90614 Sensor Libraries 

 

 

Fig. 19 Installing the MAX30100 Sensor Libraries 

 

 

4. SYSTEM PROGRAMMING 

 

The serial baud rate was set to 9600 in the setup() function. Then, also in this function, 

we initialized the temperature (mlx) measured by the sensor through the begin() method, 

describing the sequence according to the serial connection: as long as it does not exist and if 

the sensor is not properly connected, the serial monitor will notify us with an error message, 

and as long as the statement is true the program will wait. 
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 In the loop() function we started the description of the temperature measurement logic. 

Thus, we defined a variable of type double to save the data retrieved by the sensor through the 

function readObjectTempC() in degrees Celsius. If the body temperature is greater than 36°C 

and less than 37.4°C, with a margin of error of about 0.2°C, then the temperature is optimal, a 

message displayed on both the serial monitor and the LCD screen. 

 

 

 

If the temperature is higher than 37.4°C and lower than 42-43°C, then the displayed 

message will be the one corresponding to the increased temperature. 

 

 

If the retrieved temperature is abnormal, lower than 36°C and higher than 43°C, then 

the displayed message will be an error message and will instruct the person to take another 

measurement. 

 

 

 

In the code described for the MAX30100 sensor we did the same for the temperature 

sensor. For the first time, we have included in the program the libraries where the functions, 

filters, registers and methods used in measuring pulse and blood oxygen level are defined. 
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We have defined the object that will call both the pulse function and the SpO2 function. 

Next, we used a void routine that will be automatically called by the program every time the 

sensor senses a pulse, and will show us on the serial monitor that it has sensed activity. 

 

 

 

In the setup() function we specified as with the previous sensor, if the call to the 

MAX30100 sensor does not occur properly or does not occur at all, the message displayed by 

the serial monitor will be an error message and will not proceed further. Otherwise, it will tell 

us that the sensor initialization was successful. 

 

 

In the loop() function we specify if the time set since the last measurement has passed 

and we will start taking the information from the sensor one by one, displaying it on the serial 

monitor. The initial "pulseOk" and "spo2Ok" state variables will be initialized to 0. 

 

 

 

For the pulse, we compared the recorded values with the normal range of the human 

pulse (50, 130). We have divided this range into 3 parts to interpret it: (50, 60), (60, 100) and 

(100, 130). If the pulse value is between 50 and 60 bpm, the pulse will be low. If it is between 

60 and 100, the pulse will be normal. If it is between 100 and 130 the pulse will be high. Finally, 

after the pulse has been properly measured, the variable "pulseOk" is updated to 1. 

 



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

48 

 

 

Likewise, for the oxygen level. The recording range was set between the percentages 

78% and 101%. If the oxygen level is less than 90%, the SpO2 will be low. Otherwise, if it is 

in the range (90, 101), SpO2 is normal/good. Finally, the variable "spo2Ok" is updated to 1. 

 

 

After recording the two quantities, the time since the last data acquisition by the sensor 

is updated with the time since the program started running to make the loop again wait until the 

next measurement. 

 

 

If what the sensor recorded is not within the normal measurement parameters, the serial 

monitor will show us a message specifying the information and suggesting that we try another 

measurement. 

 

 

 

The pulse sensor ended up being connected to the Arduino Uno as we said above, and 

the code and data interpretation logic remained the same, depending on the normal parameters 

set. For the code run by the ESP32 I needed some additional logic in addition to the temperature 

sensor, as the board also takes in the data recorded by the pulse and oxygen sensors on the 

Arduino. 

 As the Arduino and the ESP communicate with each other serially via UART, in the 

software communication chapter we needed a condition that would change every time the data 
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was successfully retrieved by the ESP from the Arduino. The first time I determined with two 

variables whether the pulse and the blood oxygen level were correctly recorded in the code of 

the Arduino board, and if so: I printed on the serial monitor a string of characters: "hrd_", with 

another character between the two measurements "_", which marks the difference between the 

two retrieved data, one for pulse and one for oxygen. The following sequence appears on the 

serial monitor: "hrd_puls_oxygen". After an appropriate measurement, the condition changes 

to signal this. 

 

 

 

For the code on the ESP32, which is also the microcontroller that controls all the data 

recorded by the sensors, I needed a String variable to read the information from the serial 

monitor of the Arduino Uno microcontroller (Serial2). After reading what is written on Serial2, 

to later operate with them, I had to differentiate between the two measurements: pulse and 

oxygen, because they came on a single line in the form "hrd_puls_oxygen". Through two 

integer variables "_index" and "_index2", we recorded the position of the first character "_" in 

the string and the position of the second character "_", respectively. Why do we care about this? 

Because what is written after the first "_" is the measurement for pulse, which we are interested 

in, and what is after the second "_" is the measurement for SpO2.  

 Thus we started to read and record in two distinct variables of type String x and y, the 

values of the divided string: in x - what is between the two "_" in the big string (measurements 

corresponding to the pulse) and in y - what is between the the second ”_” and the end of the 

whole string (measurements corresponding to blood oxygen). After the proper recording of 

pulse and SpO2 data by the ESP32 has occurred, the condition changes to signal the success of 

the operations and to move on in the code to the temperature measurement by the sensor 

connected to the ESP32 itself. 
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The imposed condition works like a switch. While a measurement is being recorded on 

one of the boards, the other sensor waits until the current one records a correct measurement, 

then tells it when it's done and can record the second sensor, and vice versa. The display on the 

LCD of the measurements for temperature, pulse and oxygen takes place after all the data has 

been received by the ESP, and will present the information to the users with the strict 

interpretation: 

 

 

Fig. 20 LCD display of measurements 

 

 

5. CONCLUSIONS 

 

o The system was designed as a device that measures vital functions and records the data in a 

table in a database, it works, it uses simple, relatively cheap components, it corresponds to the 

original idea, the system can be easily used by anyone; 

o The system can be used at home by people who want to record data about body temperature, 

heart rate and blood oxygen concentration, information needed by people at risk, sick or simply 

curious; 

o The system can be used in hospitals, offices or any institutions that want to monitor people 

entering the premises, to be able to make statistics or to take measures to keep the area safe;  

o It has applicability in checking athletes, such as swimmers, people who practice athletics or 

contact sports, to determine whether they are fit to start training, both in adults and children; 

o You can sort the data recorded in the database table by size, or by type, to create advanced 

statistics in specialized applications. 

o For a more accurate measurement and a low margin of error, high quality or more sensitive 

sensors can be used;  

o An application can be created for the phone to be able to access the data from the sensors at any 

time; 

o Power sources can be replaced by batteries or other individual sources. 

 

 

REFERENCES 

 

[1] S. Oniga, Microprocesoare şi microcontrolere, note curs, http://ece.ubm.ro/cursuri/.  

[2] M. Margolis, B. Jepson, N. R. Weldin, Arduino Cookbook, 3rd Edition, O`Reilly, 2020. 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

51 

[3] https://microcontrollerslab.com/mlx90614-non-contact-infrared-temperature-sensor-esp32/ 

[4] https://microcontrollerslab.com/max30100-pulse-oximeter-heart-rate-sensor-esp32/ 

[5] A. James, Arduino: The complete guide to Arduino for beginners, including projects, tips, tricks, 

and programming!, Ingram Publishing Ltd., 2019. 

[6] http://www.esp32learning.com/code/esp32-and-max30100-heart-rate-monitor-sensor.php 

[7] E. Lupu, Annamaria Mesaros, A. Suciu, Microprocessors - Architectures and 

Applications, Risoprint Cluj-Napoca, 2003. 

  



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

52 

Received: June 2024, Accepted: December 2024, Published: December 2024 

Digital Object Identifier: https://doi.org/10.34302/CJEE/SQTJ4961 

 

 

 

VOLTAGE PROFILE IMPROVEMENT WITH APPLICATION OF 

DIFFERENTLY OPTIMIZED FACTS CONTROLLERS 

 

Joel R. SUTTER, John N. NDERU and Ariel M. MUTEGI  

The School of Electrical, Electronic and Information Engineering (SEEIE), Jomo Kenyatta University 

of Agriculture and Technology, Nairobi, Kenya 

joelruttosutter@gmail.com, adjainderugac@gmail.com, arielmutegi@yahoo.com 

 

Keywords: Algorithm, FACTS, voltage profiles, tuning, constrained optimal power flow, power system 

parameters, power transients, real and reactive power control 

 

Abstract: This research work presents a novel individual and Hybrid MGA and IGWO was 

utilized to develop FACTS-controlled optimization model for improvement of bus voltage 

profiles. The algorithm simultaneously solved the objective problem and augments device 

parameters as it searches for the best FACTS location and sizes. Objective function was 

resolved Security Constrained Optimal Load Flow (SCOLF) with the integration FACTS 

power electronics controllers for TTC without violating active and reactive power generation 

confines, voltage boundaries, line flow limits, and FACTS devices operation restrictions and 

ratings. TCSC controller parameters have been effectively optimized for the research and the 

work has been successfully carried out on MATLAB platform using IEEE 30-bus test bus 

systems. Power system procedures and parameters can be augmented using artificial 

intelligence techniques like ANN, ANFIS, Fuzzy Logic, DEPSO and MGA together with 

power electronics built versatile and highly adaptable Flexible AC Transmission Systems 

controllers. FACTS normalize voltage or control the power that is either added into or 

absorbed from the system. They enhance the overall grid capacity and performance. They 

also increase the dependability and efficiency of power systems. Apart from alleviating power 

transients, FACTS provide greater system real and reactive control.  

 

 

 

1. INTRODUCTION 

 

Currently, electrical energy utilities run on constraints of complex interconnectivity and 

operation limits therefore forcing them to operate within their existing infrastructure at a higher 

effectiveness. There is an ever growing interest in better operation and usage of the prevailing 

electricity infrastructure to enable the effective control of load flow, advance network 

dynamics, and upsurge system dependability by use of these devices. In addition, the devices 

https://doi.org/10.34302/CJEE/SQTJ4961
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can also play a pivotal role in augmentation of power grid transmission capability [1]. Extensive 

variety of algorithms have been advanced for computing TTC, increasing voltage profiles, 

optimizing via minimization the generation costs and loss lessening. Optimization of network 

parameters can be executed by methods including but not limited to SQP, DEA, DEPSO, MGA, 

BGA, ABCA, PSO and transfer based TSCOPF techniques. These ways necessitate the 

formulation of an objective function for the to get the optimal solution. [2]. Under constantly 

increased electricity demands, it is becoming more critical to boost the system capability such 

that more power transfers, maintenance of voltage stability margins and losses are minimized 

with less network expansion investment. In the place of building new supply substations or 

lines, proper installation and optimization, with Artificial Intelligence (AI), of transmission as 

well as generation units can make power networks billet more from source end to load [3]. With 

application of these optimized devices, the electrical energy can be transmitted over the selected 

paths with considerable increase in transmission line capability and additionally enhancement 

for the security of interconnected power network. UPFC, for example, is very adaptable and 

versatile amongst the FACTS controllers [4]. Augmentation of total transfer capability, 

optimization via minimization of power losses and enhancement of voltage profiles in strained 

and overloaded transmission network guarantees that the system is steady and effectual even 

under stressed circumstances. AI methods can be suitably applied to determine the optimum 

ratings and values of these devices for simultaneous resolution of diverse power grid problems.  

 

 

2. CONTEXT 

 

Placement of FACTS is achievable and optimization is critical in realization of the 

device ultimate capability. In early days, stabilization of electrical grids was realized via 

equipment like PSS, AVRs and approaches like breaking resistor, discounting of system 

transmission reactance, use of grouped or bundled conductors, SCC limiters and the most lately 

placement of FACTS devices. These devices have the capability to alter the three main control 

parameters, i.e. the bus voltage, reactance of the transmission line, and phase angle between 

two buses, either concurrently or autonomously. They achieve this via the regulatory control of 

the in-phase voltage, voltage of the quadrature axis and parallel compensation to better voltage 

stability, power transmission and shrink system losses of the composite interconnected power 

grid. To harness the several benefits of these devices, AI techniques can be used to augment the 

parameters. This way, FACTS devices optimization models for objective functions of more 

than parameter. This is critical since the devices are very expensive and comparative analysis 

is required for commercial reasons [4]. Heuristic search methods have been found to be robust 

and efficient to solve such complex problems and give fairly optimal results. The IGWO 

augmentation algorithm applied in this work, is susceptible to premature fall into the local 

optimum and its convergence speeds are quite low. Consequently, so as to increase the global 
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convergence and equivalent speed, this research has utilized MGA to mitigate this 

phenomenon. IGWO's searching ability is based on two principles: survey and exploitation. 

Survey refers to the process of exploring new areas or mathematically, the process of looking 

for a solution as much as possible in a search space to prevent local optimum stagnation. On 

the other hand, exploitation refers to looking in the same direction in greater depth or 

mathematically, searching for a solution with high precision. Using the IGWO algorithm to find 

the global optimum with high efficiency necessitates achieving the proper balance between 

exploration and exploitation. As compared to other swarm intelligent techniques, IGWO 

algorithms perform well in finding the global optimum for the high-dimensional problem, but 

not so well in finding the global optimum for low-dimensional problems. Usually, there is no 

guarantee that IGWO will identify global minima, it is conceivable that it will stick with local 

minima and calculate corresponding angles that do not eliminate the third harmonic. To mitigate 

this issue, a donor vector from MGA technique is used, which adds randomness to the IGWO 

technique and allows it to escape out of the local optimum and look in a new direction for the 

global optimum. Since the MGA technique is based on accomplish random initialization, it 

outdoes finding the global optima, but it has a limitation in that it lacks a parameter that is 

directly related to algorithm convergence, so the speed of convergence is very slow and 

provides power oscillation around the global optima. As a result, the flaw in one approach is 

offset by another method. Therefore, a new algorithm called improved gray wolf optimization 

and Modified Genetic Algorithm (IGWO-MGA) is proposed in this thesis, which combines the 

IGWO algorithm with a better convergence factor and the MGA algorithm with a dynamic 

scaling factor with the help of a MGA crossover operator [5][7][11]. 

 

 

3. PREVIOUS RESULTS 

 

From the previous literature studies, optimum placement various FACTS devices have 

been research with mainly singular heuristic methods. To realize the peak performances of these 

devices; the best location, hybrid AI methods need to be introduced and their performances 

assessed with single ones. The assessment has also deduced that the devices have been utilized 

jointly and separately to offer voltage over active and real power control and regulation via the 

voltage injection and absorption properties they possess. The controllers have used to enhance 

one or two parameters like voltage stability, loss reduction or transient stability and other 

system parameters. This research has gone a step further. It will further delve into the 

development of hybrid GA-IGWO FACTS-controlled model for optimization of total capability 

transfer and observation of voltage profile enhancement and loss reduction. The unique FACTS 

controlled AI optimization model for TTC enhancement crucial for comparative analysis, 

system performance and economic reasons. Performances of single AI models also need be 

compared with the hybrid ones for both optimization of the system parameter as well FACTS 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

55 

devices allocation. Hybrid evolutionary heuristics with different strengths are also presented in 

this work. This work will create a basis of evaluating their optimization capabilities with other 

techniques in the foreseeable future. 

 

 

4. METHOD USED 

 

4.1. Problem formulation 

 

The problem will be formulated to form the maximization the viable TTC while making 

observation on voltage profiles and system loss reduction. The optimization problem can be 

augmented instantaneously subject to the numerous equality and inequality limitations. The 

objectives maximizing TTC and observation of profiles of bus voltages and power loss 

lessening characteristics. The formulation covered the TTC base case (without FACTS 

controllers), TTC with UPFC and TTC with TCSC. TTC is the utmost power transfer without 

any line thermal overload, within violation of voltage bounds voltage unsteadiness or transient 

probations. It’s the central constituent of the ATC. Its dependent on system base case operating 

conditions, system operating limits, configuration of the system network, network 

contingencies among other constraints. TTC can be accomplished using Repeated Power Flow, 

Continuation Load Flow and Security Constrained Load Flow. The Security Constrained Power 

Flow has been utilized for this study [5]-[12]. 

 

4.2. Base case CPF (without FACTS controllers) 

 

To find TTC, the objective is to optimize through maximization strategy the power 

transfer between two areas while operating within thermal, voltage and stability confines. A 

typical TTC problem formulation is presented as illustrated in the following equation:  

  

 𝑃𝑟 = ∑ 𝑃𝐷𝑖
𝑀𝐵𝑆𝑁𝐾
𝑘=1  (1) 

 

The above is subject to: - 

 𝑃𝐺𝑖 − 𝑃𝐷𝑖 + 𝑉𝑖𝑉𝑗𝑉𝑖𝑗 𝑐𝑜𝑠(𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗) = 0 (2) 

 

 𝑄𝐺𝑖 − 𝑄𝐷𝑖 + 𝑉𝑖𝑉𝑗𝑌𝑖𝑗 𝑠𝑖𝑛(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (3) 

 

 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  (4) 

 

 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 (5) 
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 𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗.𝑚𝑎𝑥 (6) 

 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (7) 

 

where: MBSNK is the number of load buses in the receive end and PDi is the real load at bus i.  

The other equations are the power flow restraints and the following equations denote 

active and reactive power generation bounds, the second last equation stands for the thermal 

limitations and the last equation denotes the voltage level constraint. 

 

4.3. CPF with TCSC FACTS Controller 

 

The modified TTC function with TCSC FACTS controller, Pr for maximizing the TTC 

[44] of power transactions between source and sink areas in power system is given as: 

 

 𝑃𝑟 = ∑ 𝑃𝐷𝑖
𝑀𝐵
𝑘=1  (8) 

 

The equality constraints with TCSC controller are formulated as follows:  

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 + ∑ 𝑃𝑃𝑖
𝑚
𝑘=1 (𝛼𝑃𝑘) + 𝑉𝑗𝑌𝑖𝑗(𝑋𝑆) 𝑐𝑜𝑠(𝜃𝑖𝑗 (𝑋𝑠) − 𝛿𝑗 + 𝛿𝑗) = 0                                        (9) 

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 + ∑ 𝑃𝑃𝑖
𝑚
𝑘=1 (𝛼𝑃𝑘) + 𝑉𝑗𝑌𝑖𝑗(𝑋𝑆) 𝑠𝑖𝑛(𝜃𝑖𝑗 (𝑋𝑠) − 𝛿𝑗 + 𝛿𝑗) = 0                                       (10) 

 

Given that:  

 

 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥 (11) 

 

 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 (12) 

 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (13) 

 

 𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 (14) 

 

 0 ≤ 𝑋𝑠𝑖 ≤ 𝑋𝑠𝑖
𝑚𝑎𝑥  (15) 

 

 𝛼𝑃𝑖
𝑚𝑖𝑛 ≤ 𝛼𝑃𝑖 ≤ 𝛼𝑃𝑖

𝑚𝑎𝑥 (16) 

 

 0 ≤ 𝑉𝑈𝑖 ≤ 𝑉𝑈𝑖
𝑚𝑎𝑥 (17) 
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 −𝜋 ≤ 𝛼𝑈𝑖 ≤ 𝜋 (18) 

 

 𝑄𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑣𝑖 ≤ 𝑄𝑣𝑖

𝑚𝑎𝑥 (19) 

where:  

PGi and QGi are active and reactive power generation at bus i 

PDi and QDi are active and reactive loads at bus i 

PPi(αPk) and QPi(αPk) are the injected real and reactive power of TCSC at bus i 

Vi and Vj are voltage magnitude at buses i and j 

Yij(Xs) and θij(Xs) are the magnitude and angle the ijth component in admittance matrix with 

TCSC  

δi and δj are the bus i and j voltage angles 

𝑃𝐺𝑖
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑃𝐺𝑖

𝑚𝑎𝑥 are minimum and maximum bounds of real power generated at bus i 

𝑉𝑖
𝑚𝑖𝑛𝑎𝑛𝑑 𝑉𝑖

𝑚𝑎𝑥 are minimum and maximum bounds of real voltage valueat bus i 

𝑇𝑖
𝑚𝑖𝑛𝑎𝑛𝑑 𝑇𝑖

𝑚𝑎𝑥 are the minimum and maximum range of tap changing transformer  

𝑋𝑆 is the vector reactance of TCSC 

M is the sum of all buses 

MG is the quantity of generator units  

ML is the sum of all branches, and  

MBSNK is the total quantity r of load buses in sink/receive end area. 

 

4.4. Proposed Optimization Techniques 

 

i. Modified Genetic Algorithm 

MGA is a stochastically biologically inspired technique presented by Storm and Price 

in 1997. MGA belongs to the family of genetic algorithms (GA). MGA performs just like a GA 

and it has the following operation: initialization, mutation, crossover, and selection. In MGA, 

characters are abridged chromosomes which programs the control parameters of the problem. 

Strengths of an individual characters gives the objective function commonly denoted as fitness 

that must be augmented in the optimization process. An arbitrary function has the chance yield 

the primary population size. Soon after the commencement, successive populaces are produced 

using the MGA process of iteration. This incorporates three rudimentary functional operations: 

-reproduction, crossover and mutation procedures. Finally, the population steadies since no 

healthier individual can be created. As the algorithm converges, and majority of the individual 

characters in the population are nearly undistinguishable hence denotes a sub-optimal results. 

The outcomes are critical in the determination of the optimization characteristics of the 

augmentation procedure. For application of MGA in resolution of additional and particular 

problem, one has to outline the solution illustration and the coding of control parameters. The 
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augmentation problem in question is solved by use of Security Constrained Power Flow 

(SCOPF) to find the Total Transfer Capability for specified MGA-tuned FACTS devices to 

define optimal positions and compensation dimensions [13]. The basic operation of MGA is 

stated as follows: - 

a) Initialization operation   

The procedure for initialization will choose the primary population while operating 

within the span of the control parameters with an arbitral number creator. Users can hypothesize 

the quantity of population in this process. 

b) Selection operation  

This is a key reproduction procedure where individual chromosomes are derived as per 

their respective objective function/fitness. This is a simulated procedure that imitates the 

version of the Darwinian natural selection phenomenon. Initially, the reproduction process 

begins with selection of chromosomes for pairing. The roulette wheel selection is best suited in 

this for application at this instance. It is observed that stochastic common samples exhibit 

superior convergence characteristics.  

c) Crossover operation  

It’s one of the crucial physiognomies of MGA augmentation tenets dissimilar from other 

optimization algorithms. The operation focal objective is to reconstitute blocks on varied 

individuals to create a new block of generations as shown in the equations below:  

 

 𝑥1 = 𝜇1𝑥 + 𝜇2 𝑦 (20) 

 

 𝑦1 = 𝜇1𝑦 + 𝜇2𝑥 (21) 

 

 𝜇1 + 𝜇2 = 1, 𝜇1𝜇2 > 0 (22) 

 

where x, y denotes two parents, x’, y’ defines two descendants. µ1 is gotten by an unchanging 

random number generator sandwiched between the range (0~l). 

d) Mutation operation   

This is vital in presentation of artificial divergence in the populace to shun untimely 

convergence to local optima. A computation operation demonstrated positive result in a 

numerous study is dynamic or non-even mutation is formulated for fine-tuning intended at 

attaining a highest degree of precision. For instance, provided with parent x, if gene xk is 

designated for mutation operation, the resulting gene is chosen with equivalent likelihood from 

the two selections: 

 𝑥𝑘
1 = 𝑥𝑘 + 𝑟(𝑏𝑘 − 𝑥𝑘) (1 −

𝑡

𝑇
)b (23) 

 

 𝑥𝑘
1 = 𝑥𝑘 − 𝑟(𝑥𝑘 − 𝑎𝑘)(1 −

𝑡

𝑇
)b (24) 
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r denotes uniform random number selected between the span of (0,1), t is the prevailing 

generation number, T is the highest number of generations and b is a variable responsible for 

the degree of absence of constancy. The extent of mutation lessens as the number of generations 

upsurges. 

e) Replacement of population  

There are two population substitution approaches, non-overlapping generations and 

steady-state substitution. When utilizing non-overlapping generations, a generation was 

completely swapped by its progeny made via selection, crossover and mutation operation. It is 

conceivable for the offspring to be inferior than their parentages. Some of the fitter 

chromosomes may be vanished from the evolutionary process at this stage. The steady-state 

replacement or constant substitution is applied to go over and circumvent this problem. In this 

course, a number of offspring are created and these replace the same number of the least fit 

individuals in the population hence providing better convergence. [14] –[19] 

 

ii. Improved Grey Wolf Optimization (IGWO) Algorithm  

IGWO a newfangled swarm intelligence algorithm grounded on the firmly orderly 

scheme and hunting conduct of grey wolves, which comprises three parts: tracking prey, 

surrounding prey, attacking prey, and other optimization processes. It’s abridged as shown in 

the diagram below:   

Figure 1: Grey wolf pack ranking 

 

Wolf ranking Hierarchy  

These wolves largely animate in clusters, and they follow a social pecking order, as 

shown in figure 1, displayed above. It can be realized from the figure that the α Wolf is the 

trailblazer of the social group and is mostly in authority for making choices and deciding about 

actions such as predation as the other wolves submit to the command of the α Wolf. Level 2: β 

Wolf, submitting and supplementary to the α Wolf, controls all the wolves excluding the α 

Wolf. Level 3: δ Wolf, submitting the authority of α and β Wolf at the same time, can rule the 

residual wolf pack. The ω wolves rank is the lowermost class in the pecking order. The universal 

predation conduct of grey wolves is controlled by α wolves, and the duty of other wolves is to 

confine the prey. 

Surrounding prey 
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Grey wolves confine their prey as they hunt, hence stifling their movement. The 

computational model of enclosing the prey is outlined as follows: - 

 

 D = | C. Xp (t) - X (t) | (25) 

 

where X(t) denotes the location of grey wolves, and Xp signifies the point vector of prey: 

 

 X (t +1) =Xp - A·D (26) 

 

 where A and C symbolize constant vectors, and the computational formula is shown below: 

 

 A = 2a·(r1-1) (27) 

 

 C=2r·t (28) 

 

where t denotes the existing sum of all iterations, and a = 2 (1-t/Tmax) denotes that the varying 

parameter decreases in a linear manner from 2 to 0, r1, r2 ∈ [0,1] throughout the iteration course. 

 

Hunting prey 

These wolves also recognize prey and edge it. The hunt procedure is α Wolf commands 

and leads, β and δ sometimes, they will participate in hunting as well. Hypothesis α, β and δ. 

The wolf can have a profound comprehension of the probable site of prey, and consequently, 

during the algorithm process of iteration, keep the finest location of the three wolves in the 

existing population, and mark them as α, β and δ. Thereafter, in accordance with the position 

of the three parameters ϖ Wolf individuals are rationalized and updated. The computational 

model is thus advanced and established.  

 

iii. Hybrid MGA and IGWO Algorithm  

IGWO augmentation technique has been efficaciously applied in the areas of job 

planning, power system analysis, control and protection simulation, economic forecasting, 

among others. Yet, similar to other approaches, the algorithm is predisposed to falling 

prematurely into the local optimum and possess convergence speed of very low magnitudes. 

Hence, in order to increase the global convergence levels and better the convergence speeds, 

this research work has utilized MGA to mitigate this inadequacy. GWO's searching ability is 

based on two principles: exploration and exploitation. Exploration refers to the process of 

exploring new areas or mathematically, the process of looking for a solution as much as possible 

in a search space to prevent local optimum stagnation. On the other hand, exploitation refers to 

looking in the same direction in greater depth or mathematically, searching for a solution with 

high precision. Using the GWO algorithm to find the global optimum with high efficiency 
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necessitates achieving the proper balance between exploration and exploitation. As compared 

to other swarm intelligent techniques, GWO algorithms perform well in finding the global 

optimum for the high-dimensional problem, but not so well in finding the global optimum for 

low-dimensional problems. Normal there is no guarantee that GWO will identify global 

minima, it is conceivable that it will stick with local minima and calculate corresponding angles 

that do not eliminate the third harmonic. To mitigate this issue, a donor vector from a MGA 

like the differential evolution technique is used, which adds randomness to the GWO technique 

and allows it to escape out of the local optimum and look in a new direction for the global 

optimum. Since the DE technique is based on accomplish random initialization, it outdoes 

finding the global optima, but it has a limitation in that it lacks a parameter that is directly 

related to algorithm convergence, so the speed of convergence is very slow and provides power 

oscillation around the global optima. As a result, the flaw in one approach is offset by another 

method. Therefore, a new algorithm called improved gray wolf optimization and differential 

evolution (IGWO-MGA) is proposed in this thesis, which combines the IGWO algorithm with 

a better convergence factor and the DE algorithm with a dynamic scaling factor with the help 

of a DE crossover operator. The initialization of a arbitrary vector of population size “Np” with 

dimension “d” under boundary conditions is the first step in the IGWO-MGA method. Where 

‘d’ denotes the problem dimension or the number of variables in the problem, and this random 

vector is referred to as the target vector, which can be described as shown below: 

 

 |𝑋𝑖
𝑡|=(𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , 𝑥𝑖,3

𝑡 ………𝑥𝑖,𝑑
𝑡 )  (29) 

 

where 𝑖 ∈ {1,2, 3…Np}, and 𝑡 is the current value of iteration and each individual can be 

calculated as follows: 

 

 𝑥𝑖,𝑗 = 𝑥𝑙,𝑏+ rand (0,1)*(𝑥𝑢𝑏 − 𝑥𝑙𝑏) (30) 

 

where 𝑥ub, 𝑥lb are the upper bound and lower bound vectors with d individuals respectively. The 

same way as in IGWO, the three best results in IGWO-MGA are kept as alpha (𝑋→𝛼), beta 

(𝑋→𝛽), and delta (𝑋→𝛿) solutions from the target vector. Succeeding the saving of the results, 

the target vector is exposed to a mutation in a manner resembling the MGA technique. In the 

proposed algorithm, donor vector 𝑉→𝑖𝑡 is created from the target vector 𝑋→𝑖𝑡 using a 

DE/best/1 mutation approach with a dynamic scaling factor 𝐹′, which offers more arbitrariness 

in the initial stages, preventing the algorithm from dropping into a local optimum, while the 

value of 𝐹′ decreases in the final stages, boosting the algorithm's convergence speed. So, the 

donor vector can be stated as follows:  

 

 |𝑉𝑖
𝑡| = |𝑋𝑎𝑙𝑝ℎ𝑎

𝑡 | + 𝐹′ ∗ (|𝑋𝑅1| − |𝑋𝑅2|) (31) 
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where 𝑋alpha, 𝑡 is the α solution or best solution as far and 𝑋𝑅1, 𝑋𝑅2 are the randomly selected 

solution from the target vector and F’ can be expressed as follows: 

 

 𝐹′ =
2

1+𝑒
(𝑘∗(

𝑡
𝑡𝑚𝑎𝑥

)
 (32) 

 

IGWO's searching ability is primarily determined by the vectors A and 𝐶, where 𝐶 is a 

randomly generated vector ranging from 0 to 2, the wolves favor exploration if 𝐶→ > 1 and 

exploitation if 𝐶 < 1, and 𝐶 plays no role in IGWO's convergence speed. Now, the only vector 

that is important in convergence is 𝐴, but the value of 𝐴 is determined by the convergence factor 

or 𝑎, and the value of 𝑎 decreases linearly from 2 to 0 over the course of iteration. We need to 

adjust the convergence factor to enhance the speed of the algorithm as shown in the equation 

below:  

 𝐹′ =
2

1𝑒
(𝑘∗(

𝑡
𝑡𝑚𝑎𝑥

−
1
2
)
  (33) 

 

Using this better convergence factor, the improved placement of the wolves can be 

calculated on the foundation of the position of the greatest wolves. Let us consider the ith 

position vector of wolves in the tth iteration as 𝑊𝑖
𝑡 = [𝑤𝑖,2

𝑡 , 𝑤𝑖,2
𝑡 …𝑤𝑖,𝑑

𝑡 ]  which can be calculated 

using equation. The two vectors are combined using a binomial crossover operator to generate 

a position vector for the next iteration. The new location vector can be defined as follows [20-

24]: 

 𝑋𝑖,𝑗
𝑡+1 = {

𝑉𝑖,𝑗
𝑡  𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑂𝑅 𝑗 = 𝛿

𝑋𝑖,𝑗
𝑡  𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑅 𝐴𝑁𝐷 𝑗 ≠ 𝛿

 (34) 

 

4.5. Research procedure 

 

The objectives of this will be realized as follows: 

1. An objective function based (base case, without FACTS) for maximization total transfer 

capability as the optimization problem will be formulated and solution derived 

2. Singular Modified Genetic Algorithm and Improved Grey Wolf Optimization to solve the 

objective function, separately, via optimal location and sizing of FACTS devices will be 

developed  

3. Hybrid Genetic Algorithm and Improved Grey Wolf Optimizer Algorithm will be 

developed and used to solve the function for maximizing power transfer capability while 

observing the voltage profiles and loos reduction  

4. Hybrid Improved Grey Wolf Optimizer Algorithm and Genetic Algorithm with FACTS 

model above will be utilized to carry out simulations and evaluate effectiveness of model 

on improvement of power transfer capability  
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5. The results will be assessed and effects of individual FACTS devices compared to each 

other for the four system parameters under consideration. 

6. The proposed test networks will be the standard IEEE 30 bus test system 

7.  Simulation will be carried out in MATLAB 

 

 

5. RESULTS AND DISCUSSION 

 

5.1. Results from the optimal power flow (Base case, without optimized FACTS) 

 

5.1.1. Voltage profile curve (Base case, without optimized FACTS) 

Figure 2 below shows the voltage profile curve for the base case (Base case, without 

optimized FACTS). The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value 

is observed at bus 30 (0.995 p.u.).  

 

 

Figure 2: Voltage profile curve (Base case, without optimized FACTS 

 

5.2. OPF with GA-tuned UPFC 

 

5.2.1. Optimization results  

The optimized values for GA-tuned UPFC are indicated in the table below:  
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Table 1. Optimization results 

Parameter      Values  

Voltage UPFC (PU)          1.01     and    1.03 

Angle UPFC (R)                 -0.01   and      0.54 

Location UPFC (Bus)           Bus 1 and Bus 8 

 

5.2.2. Voltage profile curve with GA-tuned UPFC  

Figure 3 below shows the voltage profile curve for the with GA-optimized UPFC 

FACTS). The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is 

observed at bus 30 (0.995 p.u.). There is no significant variation of the voltage profiles with 

application of GA-tuned UPFC FACTS controller as compared to the base case scenario.  

 

Figure 3: Voltage profile curve with GA-tuned UPFC 

 

5.3. OPF with GA-tuned TCSC 

 

5.3.1. Optimization Results     

 The optimized values for MGA-tuned TCSC are indicated in the table below:  

 

Table 2. Optimization Results 

 

 

 

 

 

  

Parameter   Values  

Reactance TCSC (p.u.)    0 and 0.02 

Location TCSC (Line)   40 and 4 
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5.3.2. Voltage profile curve with GA-tuned TCSC 

Figure 4 below shows the voltage profile curve for the with MGA-optimized TCSC 

FACTS controller. The maximum p.u. value is observed at bus 12 (1.081p.u.) and lowest value 

is observed at bus 30 (0.997 p.u.). There is no significant variation of the voltage profiles with 

application of GA-tuned UPFC FACTS controller as compared to the base case scenario. 

 

Figure 4: Voltage profile curve for the with GA-optimized TCSC FACTS Device 

 

5.4. OPF with IGWO-tuned UPFC 

 

5.4.1. Optimization results  

Table 3 below shows the optimization results for IGWO-tuned UPFC: 

 

Table 3: Optimization results 

Parameter  Values  

Voltage UPFC () 1.04           1.05 

Angle UPFC (R) -1.08         -0.71 

Location UPFC (Bus) Bus 1 and Bus 8  

 

5.4.2. Voltage profile curve with IGWO-tuned UPFC 

Figure 5 below shows the voltage profile curve for the IGWO-optimized UPFC FACTS 

controller. The maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest value is 

observed at bus 5 (1.03 p.u.). There is significant variation of the voltage profiles with 
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application of IGWO-tuned UPFC FACTS controller as compared to the base case scenario and 

GA-tuned UPFC and GA-tuned TCSC FACTS controllers.  

 

 

Figure 5: Voltage profile curve with IGWO-tuned UPFC 

 

5.5. OPF with IGWO-tuned TCSC 

 

5.5.1. Optimization results  

Table 4 shows the optimization results for IGWO-tuned TCSC  

 

Table 4. Optimization results 

Parameter  Values  

Reactance TCSC (PU) (p.u.) 0.015    and      0.0015 

Location TCSC (Line)  Line 2     and   Line 4 

 

5.5.2. Voltage profile curve with IGWO-tuned TCSC 

Figure 6 below shows the voltage profile curve for the with IGWO-optimized TCSC 

FACTS controller. The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value 

is observed at bus 30 (0.995p.u.). There is no significant variation of the voltage profiles with 

application of IGWO-tuned TCSC FACTS controller as compared to the base case scenario and 

GA-tuned TCSC FACTS controllers but there is significant variation of the voltage profiles 

with GA-tuned UPFC case.  
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Figure 6: Voltage profile curve with IGWO-tuned TCSC 

 

5.6. OPF with Hybrid MGA and IGWO-tuned UPFC 

 

5.6.1. Optimization results 

Table 5 below shows the optimization results for Hybrid MGA and IGWO-tuned UPFC 

 

Table 5. Optimization results 

Optimization Results 

Voltage UPFC (p.u.)               1.03      and      1 

Angle UPFC ®   -0.51     and   -0.65 

Location UPFC (Bus)      Bus 30 and Bus 1 

 

5.6.2. Voltage profile curve with Hybrid M and IGWO-tuned UPFC 

Figure 7 below shows the voltage profile curve for the with Hybrid MGA and IGWO-

optimized UPFC FACTS controller. The maximum p.u. value is observed at bus 12 (1.1302p.u.) 

and lowest value is observed at bus 5 (1.04 p.u.). There is significant variation and enhancement 

of the voltage profiles with application of Hybrid GA and IGWO-tuned UPFC FACTS 

controller as compared to the base case scenario and also as compared MGA-tuned UPFC 

MGA-tuned TCSC FACTS and IGWO-tuned UPFC controllers.  
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Figure 7: Voltage profile curve with Hybrid MGA and IGWO-tuned UPFC 

 

 

5.7. OPF with Hybrid GA and IGWO-tuned TCSC 

 

5.7.1. Optimization results 

Table 6 below shows the optimization results for Hybrid MGA and IGWO-tuned TCSC 

 

Table 6: Optimization results 

Parameter   Values  

Reactance TCSC (p.u.):                  0.02            0.02 

Location TCSC (Line):               Line 4   and Line 2 

 

5.7.2. Voltage profile curve with Hybrid MGA and IGWO-tuned TCSC 

Figure 8 below shows the voltage profile curve for the Hybrid MGA and IGWO-tuned 

TCSC FACTS controller. The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest 

value is observed at bus 30 (0.995 p.u.). There is no significant variation and enhancement of 

the voltage profiles with application of Hybrid MGA and IGWO-tuned TCSC FACTS 

controller as compared to the base case scenario and also as compared to MGA-tuned TCSC 

FACTS and IGWO-tuned TCSC. There is however significant variation and enhancement of 

the voltage profiles with MGA-tuned UPFC. 
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Figure 8: Voltage profile curve with Hybrid GA and IGWO-tuned TCSC 

 

5.8. Bus voltage profiles for different optimization techniques  

 

 The voltage profile curve for the base case (Base case, without optimized FACTS). The 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). For the voltage profile curve for the with GA-optimized UPFC FACTS), the 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). There is no significant variation of the voltage profiles with application of GA-

tuned UPFC FACTS controller as compared to the base case scenario. For the voltage profile 

curve for the with MGA-optimized UPFC FACTS), the maximum p.u. value is observed at bus 

12 (1.082p.u.) and lowest value is observed at bus 30 (0.995 p.u.). There is no significant 

variation of the voltage profiles with application of GA-tuned UPFC FACTS controller as 

compared to the base case scenario. For the voltage profile curve for the with MGA-optimized 

TCSC FACTS controller, the maximum p.u. value is observed at bus 12 (1.081p.u.) and lowest 

value is observed at bus 30 (0.997 p.u.). There is no significant variation of the voltage profiles 

with application of MGA-tuned UPFC FACTS controller as compared to the base case scenario. 

For the voltage profile curve for the with IGWO-optimized UPFC FACTS controller, the 

maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest value is observed at bus 5 

(1.03 p.u.). There is significant variation of the voltage profiles with application of IGWO-

tuned UPFC FACTS controller as compared to the base case scenario and GA-tuned UPFC and 

GA-tuned TCSC FACTS controllers. For the voltage profile curve for the with IGWO-

optimized TCSC FACTS controller, the maximum p.u. value is observed at bus 12 (1.082p.u.) 

and lowest value is observed at bus 30 (0.995p.u.). There is no significant variation of the 

voltage profiles with application of IGWO-tuned TCSC FACTS controller as compared to the 
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base case scenario and GA-tuned TCSC FACTS controllers but there is significant variation of 

the voltage profiles with MGA-tuned UPFC case. For the voltage profile curve for the with 

IGWO-optimized UPFC FACTS controller, the maximum p.u. value is observed at bus 12 

(1.1302p.u.) and lowest value is observed at bus 5 (1.04 p.u.). There is significant variation and 

enhancements of the voltage profiles with application of Hybrid MGA and IGWO-tuned UPFC 

FACTS controller as compared to the base case scenario and also as compared MGA-tuned 

UPFC GA-tuned TCSC FACTS and IGWO-tuned UPFC controllers. For the voltage profile 

curve for the with Hybrid MGA and IGWO-tuned TCSC FACTS controller, the maximum p.u. 

value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 (0.995 p.u.). 

There is no significant variation and enhancement of the voltage profiles with application of 

Hybrid MGA and IGWO-tuned TCSC FACTS controller as compared to the base case scenario 

and also as compared to MGA-tuned TCSC FACTS and IGWO-tuned TCSC. There is however 

significant variation and enhancements of the voltage profiles with MGA-tuned UPFC.    

The figure below shows the bus voltage profiles for different optimization techniques: 

  

 

Figure 9: bus voltage profiles for different optimization techniques 

 

 

6. CONCLUSION 

 

There is no significant variation of the voltage profiles with application of GA-tuned 

UPFC FACTS controller as compared to the base case scenario. For the bus voltage profile 

curve for the GA-optimized TCSC FACTS controller, the maximum p.u. value is observed at 

bus 12 (1.081p.u.) and lowest value is observed at bus 30 (0.997 p.u.). There is no significant 
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variation of the voltage profiles with application of GA-tuned UPFC FACTS controller as 

compared to the base case scenario. For the voltage profile curve for the with IGWO-optimized 

UPFC FACTS controller, the maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest 

value is observed at bus 5 (1.03 p.u.). There is significant variation of the voltage profiles with 

application of IGWO-tuned UPFC FACTS controller as compared to the base case scenario and 

GA-tuned UPFC and GA-tuned TCSC FACTS controllers. For the voltage profile curve for the 

with IGWO-optimized TCSC FACTS controller, the maximum p.u. value is observed at bus 12 

(1.082p.u.) and lowest value is observed at bus 30 (0.995p.u.). There is no significant variation 

of the voltage profiles with application of IGWO-tuned TCSC FACTS controller as compared 

to the base case scenario and GA-tuned TCSC FACTS controllers but there is significant 

variation of the voltage profiles with GA-tuned UPFC case. For the voltage profile curve for 

the with IGWO-optimized UPFC FACTS controller, the maximum p.u. value is observed at 

bus 12 (1.1302p.u.) and lowest value is observed at bus 5 (1.04 p.u.). There is significant 

variation and enhancements of the voltage profiles with application of Hybrid GA and IGWO-

tuned UPFC FACTS controller as compared to the base case scenario and also as compared 

MGA-tuned UPFC, GA-tuned TCSC FACTS and IGWO-tuned UPFC controllers. For the 

voltage profile curve for the with Hybrid GA and IGWO-tuned TCSC FACTS controller, the 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). There is no significant variation and enhancements of the voltage profiles with 

application of Hybrid GA and IGWO-tuned TCSC FACTS controller as compared to the base 

case scenario and also as compared to GA-tuned TCSC FACTS and IGWO-tuned TCSC. There 

is however significant variation and enhancements of the voltage profiles with GA-tuned 

UPFC. From the bus voltage profiles, Hybrid MGA and IGWO with UPFC FACTS controller 

showed the most significant improvement of bus voltages. It imperative to note that the 

techniques have brought out the inherent strengths of the FACTS controllers applied. UPFC 

FACTS controller showed strong performance in voltage profile improvement compared to 

TCSC FACTS controller. Thus, for systems with voltage profile challenges, IGWO tuned 

UPFC FACTS controller is preferred to tuned TCSC FACTS controller.  
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Abstract: The project presents the design and implementation of a virtual temperature sensor with the 

display of the data provided by it in a web interface. The objective of the whole project is based on the 

development of a virtual sensor that estimates the temperature with the help of historical but also 

current data provided by other sensors. The goal of this project is to reduce the cost of temperature 

monitoring systems by reducing the physical sensors required. It is also aimed at the possibility of 

implementing these sensors in inaccessible places. Following the use of a machine learning type 

system, I want to implement a predictive model, which, based on the data provided by the other physical 

sensors, generates the response of the virtual sensor. Both the data provided by the virtual sensor and 

the data provided by the physical sensors will be displayed within the web interface. The project aims 

to develop a sensor network for temperature monitoring in various applications. Also, by implementing 

this system, I want to obtain a web interface that allows viewing and managing the measured 

temperature data.  

 

 

 

1. INTRODUCTION 

 

In our century, data monitoring and management has become a matter of major 

importance in multiple fields. Among them we can list industry, agriculture and the research 

environment itself. These fields and many others need this data in order to function optimally 

but also for continuous development [1]. 

But in many cases the collection of this data would not be possible without the help of 

sensors. Among them the temperature sensor stands out, it plays a crucial role in the collection 

of data aimed at ensuring optimal equipment performance, product protection, process 
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optimization and user comfort. Therefore, temperature is a parameter that must be constantly 

monitored in multiple fields [2]. 

As a result of this need to measure temperature, several types of sensors with various 

properties and characteristics have been developed. We can divide these sensors into two 

categories. The first category being contact sensors, which measure the temperature by direct 

contact with the object. The second category is non-contact sensors, which measure the 

temperature through the heat radiation emitted by the object, without making direct contact 

with it [3]. 

Although sensors have constantly evolved and developed, installing an adequate 

number of sensors to obtain a quality measurement can cause various problems. Therefore 

adding additional sensors is limited by factors such as budget, available space and 

accessibility. For example, in an industrial facility with an extensive area, adding additional 

temperature sensors to expand the monitoring network can involve high costs and increased 

complexity. In research laboratories, where space is often constrained, adding additional 

sensors may not be the most efficient solution [4]. 

In order to solve these problems, we found that replacing a set of physical sensors with 

virtual sensors within a sensor network is an efficient and pragmatic solution. Thus, by means 

of virtual sensors costs can be reduced, they facilitate the monitoring of places inaccessible 

to physical sensors, they save space and solving problems in case of failure is easier to solve 

than in the case of physical sensors. 

This project aims to develop a virtual temperature sensor that, with the help of machine 

learning algorithms, will estimate the temperature based on data received from nearby 

physical sensors. The project also aims to integrate this virtual sensor within a web interface 

to facilitate access to the data provided by the sensors in real time. Therefore, the 

implementation of this system based on virtual sensors, in addition to solving the previously 

described problems, also improves the quality of measurements by integrating and analyzing 

data from multiple sources. 

 

 

2. SYSTEM DESCRIPTION 

 

2.1. Description of Functional Blocks 

 

The presented system consists of two parts, a hardware part and a software part. The 

hardware part consists of the temperature sensors and the ESP-32 microcontroller. The 

software part includes storing the data in a database, the machine learning algorithm that 

predicts the response for the virtual sensor and displaying the data in a web interface. The 

block diagram of the whole system is shown in fig. 1. 



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

76 

 

Fig. 1. System structure 

 

 The first block encountered in the presented scheme comprises the physical sensors, 

this block contains four temperature sensors. Although four sensors are shown, only the data 

from the first three will be used in the machine learning model. The fourth sensor, as the name 

suggests is a control sensor, it is located in the same location as the virtual sensor and aims 

to measure the actual temperature in that area. The value provided by this sensor will be used 

to compare the response generated by machine learning with the actual temperature value. 

The number of sensors present within this block may vary depending on the needs of the 

application. For example, in a real application, the control sensor can be removed, and other 

physical sensors can be added as needed to increase the accuracy of the virtual sensor 

response.  

 The second block is represented by the ESP-32 board, it plays a crucial role in the 

system, because as the name of the block suggests, it deals with data processing. Specifically, 

this block collects the data from the temperature sensors, filters the noise, normalizes the 

values, and prepares this data for transmission to the next block. 

The next stage within the presented scheme is carried out by the machine learning 

block, which represents the most important component of the entire system. It contains two 

essential blocks. 

 The machine learning training block, in this the data is used to train the machine 

learning model. In this stage of the system, historical data stored in the database and new data 
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received from sensors via the ESP-32 board are analyzed. The model is built and updated 

based on this data with the aim of improving itself over time in such a way as to generate the 

most accurate estimate for the virtual sensor. Essentially, constantly adding new data to the 

existing data set and retraining the model leads to improved response accuracy. 

The response generation block, once the training of the machine learning model is 

finished, predictions can be made based on the current data, and the obtained value 

representing the response of the virtual sensor. In this block the virtual sensor value prediction 

is actually performed. 

Within the scheme presented, the database block can also be observed, it represents 

an important component for the best and most accurate functioning of machine learning. The 

Firebase database stores all the data generated by the physical sensors but also all the 

predictions of the virtual sensor. With the help of this block, the system constantly stores new 

data for continuous training of the machine learning model.  

The last block in the scheme is the data visualization block, in this block the data is 

displayed in a web interface. Through this interface data can be monitored in real time and 

easily. The processed data from the sensors and the responses generated by the virtual sensor 

are visualized in the form of a table in this interface. 

In conclusion, the presented block diagram describes a well-structured system that 

combines the hardware part with the software part in order to obtain and visualize the most 

accurate data, both from the physical sensors and from the virtual sensor. 

 

2.2. Basis of Machine Learning - Polynomial Regression 

 

Polynomial regression is an extension of linear regression, it is used to model more 

complex relationships between variables, especially when the dependent variable and the 

independent variables have a non-linear relationship [5]. 

Within the sensor system, we considered the use of polynomial regression an optimal 

solution for obtaining the values of the virtual sensor based on the data collected from the 

other physical sensors. The model underlying machine learning is capable of processing non-

linear variations from real data, thus making the chosen model ideal for modeling sensor data 

that does not have a strictly linear relationship. 

The working principle of polynomial regression is to try to minimize the difference 

between the actual values and the prediction values in the data set. This modeling uses a curve 

that can have several changes in direction in order to fit the data as well as possible to obtain 

the most accurate temperature prediction. In fig. 2 you can see the polynomial regression 

graph for predicting the temperature. 
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Fig. 2. Polynomial regression graph for temperature prediction 

 

In the graph presented, it can be seen how the polynomial regression curve 

representing the response of the virtual sensor is generated based on the four values from the 

physical sensors. 

In the previous paragraphs, the operating principle of the model that is the basis of 

machine learning was presented in a theoretical way. In the following we will present how 

polynomial regression works in machine learning code. 

Within the code, the historical data from the four physical sensors are combined into 

a two-dimensional matrix, where each row represents the sensor measurements at a particular 

time. And in order to provide the prediction, the output is calculated as an average of the four 

sensors, which gives us an approximate value for the temperature of the virtual sensor. The 

described process represents the training of the machine learning model with the historical 

data and the code sequence responsible for this step is shown in fig. 3. 

 

 

Fig. 3. Syntax code responsible for training of the machine learning model with historical data 

 

After training the polynomial regression with this historical data, a model is generated 

that is used for real-time predictions. 
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Although there are other possibilities to implement machine learning, we considered 

that in this sensor system the use of this solution is optimal from the point of view of 

complexity and performance. Polynomial regression is simpler than other models used for 

machine learning, but in terms of performance it contributes significantly to improving virtual 

sensor temperature prediction by adapting to fluctuations in physical sensor data. This fact 

makes machine learning much more effective in real environments. 

 

 

3. EXPERIMENTAL MEASUREMENTS 

 

In this chapter we evaluated the performance of the system in different configurations. 

Before presenting these measurements, it is important to describe how the system operates. 

In a simplified way, the system works like this: the data collected from the physical sensors 

is sent to the machine learning model, which uses the new data together with the historical 

data retrieved from the database to generate the response of the virtual sensor. Following this 

operation, the physical sensor and virtual sensor data will be saved in the database and 

transmitted to the web interface for display. The described process is repeated at a 

predetermined time interval. 

In this chapter we tested the performance and reliability of the virtual sensor through 

two experiments. During these experiments, we exposed the system to various configurations 

where we varied the number of physical sensors used and the sensor placement arrangement. 

In order to obtain the most conclusive results, the two experiments were carried out in similar 

environments, more precisely in a laboratory room. 

We mention that in both experiments to measure the accuracy of the virtual sensor, we 

placed a physical control sensor, its physical location is exactly where the virtual sensor 

makes the temperature prediction. 

In the following we will present the two configurations in which the system was tested, 

the various measurements performed and the results obtained. 

 

3.1. Evaluation of Triangle and Square Configurations 

 

In the first experiment we used the triangle configuration, this involves the use of three 

physical temperature sensors that were placed in the shape of a triangle and a control sensor 

placed in the middle of the triangle. Based on the data collected from the three sensors, 

machine learning generated the response of the virtual sensor. And finally, to compare the 

accuracy of the virtual sensor, its responses were compared with the values measured by the 

fourth physical sensor, the control sensor, which is located in the same location where the 

virtual sensor makes the temperature prediction. In Table 1 you can see the data obtained with 

the triangle configuration. 
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Table 1. Data table for the triangle configuration 

Time 
Sensor 1 

 (°C) 

Sensor 2 

 (°C) 

Sensor 3 

 (°C) 

Control  

Sensor (°C) 

Virtual 

 Sensor (°C) 
Difference (%) 

 
12:15 20.94 20.71 20.87 20.77 20.92 0.72  

12:30 21.15 20.82 20.89 20.81  20.90 0.43  

12:45 21.36 20.93 21.05 20.87 21.01 0.67  

13:00 21.58 21.05 21.20 21.05 21.15 0.47  

13:15 21.79 21.18 21.36 21.45 21.33 0.56  

13:30 21.92 21.45 21.54  21.75 21.65 0.47  

13:45 22.03 21.68 21.70 21.89 21.97 0.37  

14:00 22.27 21.87 21.85 22.11 22.18 0.32  

14:15 22.48 22.10 22.01 22.53  22.42 0.48  

14:30 22.74 22.40 22.25  22.68  22.53 0.67  

14:45 22.85 22.75 22.50 22.75 22.88 0.57  

15:00 23.14 23.01 22.75 23.07 22.97 0.44  

 

The presented table contains the data collected from the physical and virtual sensors 

during the experiment. In the last column we made a comparison where we can see the 

difference between the generated values and the actual measured value. 

In the second experiment, we used the square configuration, using four temperature 

sensors that we placed in a square shape in the laboratory room. As in the first experiment, 

the data collected from the sensors was used for the machine learning model that  generated 

the response of the virtual sensor. The value obtained is again compared with the value of the 

control sensor located in the center of the square. Table 2 shows the data obtained with the 

square configuration. 

Table 2. Data table for the square configuration 

Time 
Sensor 1 

 (°C) 

Sensor 2 

 (°C) 

Sensor 3 

 (°C) 

Sensor 4 

 (°C) 

Control  

Sensor (°C) 

Virtual 

 Sensor (°C) 

Difference 

(%) 
 

12:45 20.39 20.10 19.90 20.15 20.12 20.19 0.35  

13:00 20.51 20.33 20.15 20.43  20.41  20.35 0.29  

13:15 20.82 20.60 20.45 20.75 20.67 20.77 0.48  

13:30 21.14 20.95 20.80 21.19 21.02 21.07 0.23  

13:45 21.25 21.20 21.12 21.37 21.32  21.25 0.33  

14:00 21.60 21.55 21.33 21.45 21.56 21.50 0.28  

14:15 21.90 21.70 21.62 21.85 21.75 21.85 0.46  

14:30 22.27 22.05 21.91 22.15 22.10 22.19 0.36  

14:45 22.58 22.40 22.01 22.25 22.35 22.42 0.31  

15:00 22.79 22.65 22.31 22.55 22.67  22.58 0.40  

15:15 22.84 22.75 22.52 22.83 22.74  22.69 0.22  

15:30 23.04 22.85 22.77 23.12 22.88 22.94 0.26  
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We chose this configuration to see what impact adding a temperature sensor in 

addition to the previous configuration has on temperature prediction accuracy. We also 

looked at whether the square geometric position improves the accuracy and reliability of the 

system. 

As can be seen in the last column of each table presented above, the machine learning 

model was able to generate accurate temperature predictions in both scenarios, but as 

expected the accuracy was higher in the case of the four-sensor configuration. Therefore, we 

can conclude that a larger number of physical sensors contribute to improving the 

performance and obtaining a better temperature prediction. Following the two experiments, 

it can also be seen that both configurations produced satisfactory results, specifically the 

triangle configuration had a margin of error of the response between 0.32-0.72%, while the 

square configuration had a smaller margin of error, between 0.22-0.48%. 

Analyzing the two experiments strictly from a performance point of view, it is clear 

that the four-sensor system is the favorite, however using this configuration in an extended 

network would generate additional costs due to the fourth sensor. Therefore, if we wish a 

more economical system, but with slightly reduced accuracy, the configuration with three 

sensors is ideal. On the other hand, if high efficiency is a priority, the four-sensor system is 

the optimal choice. 

We mention that both configurations improve their accuracy over time, because in the 

experiments we used a relatively small amount of data to train the machine learning model. 

However, in a real application, running over an extended period of time, the system can 

accumulate a very large set of data, which will train the machine learning model and greatly 

improve its accuracy. 

 

3.2. The Motivation Behind the Chosen Configurations 

 

We would like to point out that the presented system can work in different 

configurations than those presented. For example, the virtual sensor can work with only two 

physical temperature sensors, but it can also work with five or more sensors. But based on 

the experiments we concluded that the use of only two sensors considerably reduces the 

performance, and the use of several sensors considerably increases the costs. Thus, within the 

system we opted for the use of the two scenarios, with three and four sensors, because in this 

way the system has a balance in terms of performance and economy. 

The choice of the two geometric configurations, triangle and square respectively, is 

not random. We considered these arrangements to be optimal for future sensor network 

developments, as these simple geometries provide us with an efficient solution in terms of 

how to place and interconnect sensors. For example, the implementation of the system on a 

larger scale requires a model of placement and organization of sensors because a random 
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placement would complicate the expansion of the network later. Therefore, the geometric 

shapes presented give us a way of connecting and distributing the sensors very well organized. 

Another reason we chose these configurations is that they allow for more accurate 

spatial monitoring. Triangle and square configurations ensure an even distribution of sensors, 

effectively covering the entire monitored area. If the physical temperature sensors were 

randomly placed, some areas might not be monitored correctly, creating an inconsistency in 

the data collected, which would later negatively influence the virtual sensor. Therefore, the 

chosen geometric configurations contribute considerably to improving the performance of the 

machine learning model. 

In conclusion, the chosen geometric configurations allowed the effective monitoring 

of the temperature in the space where the measurements were made, this can also be seen in 

fig. 4, it illustrates the web interface of the system. It displays the data measured by the sensors 

in real time. 

 

Fig. 4. The web interface for monitoring sensors 

 

In the web interface you can see in the first column the time at which the sensor data 

was collected, the following columns are those dedicated to the physical data sensors. After 

that, the control sensor column follows and finally in the last column you can see the response 

of the virtual sensor. 
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4. CONCLUSION 

 

The presented project demonstrates the efficiency and utility of a virtual temperature 

sensor that uses data collected from physical sensors to train a machine learning algorithm. 

This approach represents an innovative solution within existing temperature monitoring 

systems. 

One of the most important aspects of the project is the considerable cost reduction, 

especially for large temperature monitoring systems. This fact is due to the possibility of 

replacing some physical sensors with virtual sensors, thus reducing the number of physical 

sensors needed. Therefore, the use of virtual sensors leads to a significant decrease in the 

expenses related to the purchase, installation and maintenance of such a system. This aspect 

being very important in the industry where budget and space are limited. 

The presented solution not only significantly reduces the costs associated with such a 

system, but also gives it increased flexibility. Temperature monitoring systems using virtual 

sensors are more flexible because they can measure temperature in locations inaccessible to 

physical sensors. 

The use of polynomial regression within machine learning algorithms has proven 

optimal for temperature prediction, adapting well to non-linear data variations and providing 

accurate estimates based on data collected from physical sensors. 

The developed web interface allows users to access and analyze data collected from 

sensors in real time. This aspect representing an improvement in the process of monitoring 

and managing data. 

The presented system has high versatility, it can be used in various configurations 

depending on the need, for applications that require high precision the system can be adapted 

to a configuration with several sensors. On the other hand, if precision is not a crucial factor 

and the goal is to obtain an economical system, then a configuration with fewer sensors can 

be chosen. It should also be noted that continuous training of the machine learning model 

with historical and new data contributes significantly to increasing the accuracy of the virtual 

sensor predictions. 

In conclusion, the use of a virtual temperature sensor based on machine learning 

algorithms represents an effective and innovative solution to improve the efficiency of 

temperature monitoring systems, while optimizing the costs and space required for these types 

of systems. 

In further developments we aimed at using more advanced learning algorithms, 

changing sensors and improving the web interface in order to expand the scope of the system. 
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Abstract: The increasing use of thermostatically controlled loads (TCLs) like refrigerators 

poses a significant challenge to the grid due to their potential to increase peak demand. This 

study introduces a novel rule-based peak-shaving algorithm to effectively manage these 

loads. The algorithm operates in two modes: day-ahead and real-time. In the day-ahead 

mode, Long Short-Term Memory (LSTM) neural networks are utilized to forecast demand 

and generation. A Parameter tuned Grey Wolf Optimizer (GWOP) is proposed and employed 

to determine the optimal generation for the initial timestep of the scheduling period. The 

GWOP is tuned using a brute-force grid search method to optimize its parameters. In the 

real-time mode, the algorithm dynamically adjusts refrigerator operations based on real-

time mismatch calculations between predicted demand and generation. Dynamic flexibility 

thresholds are employed to determine the optimal operation of refrigerators during peak and 

off-peak periods. This approach aims to minimize energy consumption while maintaining 

thermal comfort. The algorithm's performance was evaluated using real-world data from the 

Spanish Transmission Service Operators (TSO). The results demonstrate a significant 

reduction in peak demand and total energy consumption. The algorithm with dynamic 

flexibility achieved a substantial 18.89% reduction in peak demand and a notable 12.12% 

decrease in total energy consumption. 

 

 

1. INTRODUCTION 

 

 As the world undergoes rapid urbanization and industrialization, electricity demand has 

surged, especially in developing countries where villages and towns are transforming into urban 

centers. This increased urbanization, coupled with global warming, has significantly raised the 
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usage of thermostatically controlled loads (TCLs) such as refrigerators and air conditioners in 

households and offices [1] Air conditioners account for 14% to 20% of total energy 

consumption in buildings [2], while refrigerators consume about 10% [1]. 

The widespread use of TCLs poses a challenge to network stability, particularly in 

countries with insufficient power generation capacity [3,4]. This can lead to network stress, 

load shedding, demand-supply mismatches, and increased electricity costs. For consumers, this 

instability translates into higher costs of consumption, increased cost of economic activities and 

reduced comfort. Load shedding disrupts daily activities, while demand-supply mismatches 

drive up electricity prices as utilities purchase power at higher rates or invest in expensive 

peaking plants. Despite these potential challenges of wide usage of TCLs, they offer advantages 

for demand-side management (DSM) due to their thermal storage capabilities. Demand-side 

management strategies can leverage this flexibility to maintain grid stability, reduce operational 

costs, and ensure a reliable electricity supply. One effective strategy is peak demand shaving, 

which involves shifting TCL operations to off-peak periods to reduce stress on the power 

system during peak hours [5,6].  

Peak demand shaving has been achieved using energy storage systems (ESS), DSM, 

and renewable energy integration [7]. Techniques such as optimal appliance scheduling and 

rule-based methods have been used, with significant work focused on using ESS and heaters 

for peak management. A simulation on an established building was conducted by [8] to 

determine the optimal DSM strategy from a building owner's perspective. The analysis revealed 

that power peak shaving of over 30% could be achieved without significantly impacting indoor 

conditions. Authors in  [9] employed agent-based intelligence to flatten the thermal load of a 

group of buildings. The work done in [10] utilized a stable roommate’s algorithm to minimize 

the sum of the thermal requests for 28 buildings in England. However, these studies did not 

consider the network dynamics in forming the overall district heating thermal request. Authors 

in [11] used genetic algorithm optimization to minimize the maximum peak value, achieving a 

10% reduction in overall thermal demand with minimal schedule variations. Authors in [12] 

applied the same algorithm for rescheduling, accounting for more significant modifications and 

the effects of indoor temperature changes. Authors in [13] presented a field test campaign on 

two district heating networks using the STORM controller, which reduced peaks by 7.5% – 

34%, saving operational costs and reducing CO2 emissions. Authors in [14] developed an active 

control strategy using a Model Predictive Control algorithm to maximize cogeneration plant 

profits by using buildings as storage capacity and selling electricity on the spot market at peak 

prices. Reinforcement Learning (RL) has been marginally used for directly addressing peak 

demand issues in district heating, typically applied to electric energy peak-shaving. The work 

done in [15] used an iterative Q-learning algorithm for energy arbitrage and peak-shaving of 

thermostatically controlled loads in a district heating system. Work done in [16] addressed 

thermal load management at the building level to reduce thermal peaks while maintaining user 
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comfort. Demand-side management through multi-agent models to coordinate individual 

requests and reduce intra-daily fluctuations in thermal demand has also been proposed by  [17]. 

In terms of rule-based approaches for peak shaving, limited research has been done. 

These mostly involve the use of ESS rather than TCLs. The study in [18] utilized a genetic 

algorithm (GA) to determine optimal inputs for peak shaving using rule-based method. The 

proposed optimal rule-based approach was applied to battery scheduling to shape peak. 

Although the method was effective, the rules employed to develop the proposed rule-based 

approach were complex and involved a lot of computation.  Authors in [19] introduced a real-

time battery management algorithm for peak demand shaving for commercial buildings. 

However, the work did not account for a dynamic demand limit that can be adjusted to meet 

various peak requirements for commercial buildings. Additionally, studies done in [20–22] 

evaluated peak shaving control with battery scheduling, considering a fixed demand limit. The 

fixed limits presented tight tolerance for the algorithms to operate leading to the creation of 

additional peaks and increased energy consumption. Again, the study carried out in [23] 

considered a dynamic demand limit for the peak shaving method. However, the method was 

specifically applied to Malaysian commercial buildings. Authors in [24] considered a battery 

controller with a fixed demand limit for peak shaving but did not maintain flexibility in day-to-

day management. 

Although a good amount of work has been done on peak shaving involving TCLs, ESS 

and renewables, there are some existing gaps. The literature mostly focuses on optimizing 

thermal loads and minimizing thermal requests without considering the network dynamics and 

their impact on overall thermal demand. Methods such as those using genetic algorithms (GA) 

for peak shaving (e.g., [11], and [25]) and the complex rule-based approaches for battery 

scheduling (e.g., study [18]) involve significant computational complexity which may not be 

feasible for real-time or resource-constrained environments. Many studies, including those by 

[14] have applied fixed demand limits or static control strategies. Even though some works 

(e.g., study [23]) considered dynamic demand limits, they were context-specific (e.g., applied 

to Malaysian commercial buildings) and did not offer a generalizable approach. This work 

proposes a simple rule-based peak-shaving algorithm with dynamic flexibility thresholds for 

scheduling refrigerators in real time. The proposed algorithm employs a two-level approach: 

day-ahead optimization and intra-day real-time adjustments. The research aligns with Goal 7 

of the Sustainable Development Goals (SDGs), which aims to ensure access to affordable, 

reliable, sustainable, and modern energy for all by 2030 [26]. 

 

1.1. Research contributions 

 

 The research contributions of the paper are outlined below: 

A novel rule-based peak shaving algorithm has been proposed to schedule refrigerators, 

to reduce peak demand. The rule-based algorithm simplifies decision-making by using pre-
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defined rules and dynamically adjustable parameters. This reduces the computational 

complexity of optimization-based approaches like genetic algorithms or multi-objective 

optimization problems. The proposed algorithm incorporates dynamic flexibility thresholds that 

adjust based on the system's real-time conditions. This allows for more flexible and efficient 

management of peak demand. 

A data-driven estimation method using smoothing error is proposed to predict future 

generation in the rule-based algorithm for decision making. The smoothing error method is a 

statistical technique that uses historical data to smooth out irregularities and provide a more 

accurate prediction of future generations. This method is integrated into the rule-based 

algorithm to enhance its predictive capabilities and reduce the computational intensiveness of 

existing forecasting algorithms. 

A simple discrete thermal model of a refrigerator is proposed to simulate the cooling 

and warming behaviour of refrigerators to test the proposed rule-based algorithm on a case 

study dataset. 

 

1.2. Structure of paper 

 

The rest of the paper is organized as follows: Section 2 discusses the proposed rule-

based peak-shaving algorithm and its sub-control algorithms. Section 3 describes the proposed 

refrigerator thermal model for the study. The case study dataset used to validate the algorithm's 

performance is described in Section 4 in addition to the performance metrics employed to assess 

the algorithm's effectiveness. Section 5 presents the results and discussion. Conclusions and 

recommendations for future works are discussed in section 6. 

 

 

2. DESCRIPTION OF PROPOSED RULE-BASED PEAK SHAVING FRAMEWORK 

AND ALGORITHM  

 

 This section presents the proposed data-driven, rule-based peak-shaving algorithm for 

refrigerators. The proposed framework within which the proposed rule-based peak shaving 

algorithm runs is given in Fig. 2. The framework is designed to run in day-ahead and real-time 

modes to reduce computational intensity. In the day-ahead, a forecast of demand and generation 

is done using long short-term memory (LSTM). The forecast output is used to identify possible 

peak and off-peak periods a day-ahead by analyzing the predicted demand against predicted 

generation using a simple logical algorithm. Again, to make decisions in real-time and reduce 

computational complexity, an optimization problem is defined to determine the possible 

optimum generation that the system operator can supply. This is solved with a proposed 

parameter tunned grey optimizer.  The optimum generation is subsequently updated in real time 

using a smoothing error method.  
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The proposed rule-based algorithm then takes decision by comparing current demand 

with updated generation. If a mismatch is detected beyond a certain threshold, the algorithm 

adjusts the status of refrigerators by either turning them on or off to align demand with available 

generation capacity. This process continues until the mismatch falls within an acceptable limit. 

Details of these processes are discussed in the subsequent subsections. 

 

2.1. Forecasting of Day-Ahead Demand and Generation with Long Short-Term Memory 

Neural Network. 

 

Accurate forecasting of day-ahead demand and generation is crucial for optimizing grid 

operations and maintaining system stability especially in demand response programs. In this 

study, a Long short-term memory (LSTM) neural network is employed to forecast the day-

ahead demand (PD
′ ) and generation (Pg

′). This forecast serves as a fundamental input for the 

proposed rule-based peak shaving algorithm.  The output from the forecast is used to forecast 

and identify the possible peak and off-peak periods a day-ahead within the real-time scheduling 

horizon. By analysing the forecasted demand in relation to the forecasted generation, the 

framework effectively pinpoint the periods of highest and lowest demand beyond a certain 

margin of the generation, which are classified as peak and off-peak, respectively. These 

classifications are subsequently fed into the peak shaving algorithm which enables the 

algorithm to make informed decisions regarding the refrigerator scheduling. This pre-emptive 

approach helps to reduce real-time computational complexities and enhance the overall 

efficiency of the algorithm’s operations. 

The LSTM architecture employed in the study is shown in Fig. 1 [27]. It is modelled 

and operated with the forget gate, input gate, candidate cell state, cell state and output gate, 

described with (1) - (6), respectively.  The forget gate (ft) decides the information to remove 

from the cell state (ct), the input gate (it) decides which values to update in the cell state, and 

the candidate cell state (ct)̃ creates a vector of new candidates’ values that could be added to 

the state, cell state updates by combining the old state and the now candidate values and the 

output gate (ot)  decides what the next hidden state (ht) should be, based on the cell state. 

 

ft = σ(Wf. [ht−1, xt] + bf                                                   (1) 

 

it = σ(Wi. [ht−1, xt] + bi)                                                  (2) 

 

ct̃ = tanh (WC. [ht−1, xt] + bc)                                          (3) 

 

ct = ft ⊙ ct−1 + it ⊙ ct̃                                                     (4) 
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ot = σ(Wo. [ht−1, xt] + bo)                                              (5) 

 

ht = ot⨀tanh (ct)                                                            (6) 

 

In the LSTM model, xt is the input data,  σ is the sigmoid function,  tanh is the tangent 

function, W and b are weight and biases applied during training of the LSTM model 

respectively. 

 

Input gate Output gate forget     gate 

ct

htht-1

Ct-1

tanhsig sig sig

Cell state 

tanh

ft it
ot

Ĉt 

Xt  

Fig. 1. Architecture of LSTM for forecasting day-ahead demand and generation 

 

Historical time series data Xt = [xt
d, xt

g
, xt

temp
, xt

a, xt
s],, including demand (xt

d)  , 

generation (xt
g
) , ambient temperature (xt

temp
), solar irradiance (xt

a), and solar power 

generation (xt
s), are collected and preprocessed. These variables are critical determinants of 

demand and generation patterns, providing the LSTM with the necessary context to predict 

future values accurately. The data is first preprocessed to normalize the values, ensuring that 

all features contribute equally to the model's learning process. Missing data points are addressed 

through interpolation, and the dataset is divided into training, validation, and test sets to 

evaluate the model's performance. During training, the LSTM model is fed sequences of input 

data spanning multiple time steps, forming an input vector Xt = [Xt − T + 1, Xt − T +

2,… , Xt], or each time t, where T represents the sequence length. The model uses these 

sequences to predict the target variables—day-ahead demand and generation. The training 

process involves minimizing mean squared error (MSE) between the predicted demand and 

generation and their actual values in the training set. The model's parameters (weights and 

biases) are optimized using backpropagation. The learning rate, batch size, and number of 
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epochs are carefully tuned to ensure convergence without overfitting. Fig. 2 provides a 

flowchart for the method developed to forecast demand and generation. 
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Fig. 2. Proposed data-driven rule-based peak shaving framework 
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Fig. 3. Flow chart for forecasting demand and generation. 

 

2.2.Determination of Optimal Generation for First Timestep of Scheduling Period  

 

An optimal approach based on historical data is proposed in Algorithm 1 to estimate the 

potential generation the system operator can produce at the first timestep of the scheduling day 

(intraday). This enables the proposed rule-based peak-shaving algorithm to make proactive 

decisions in real-time during the scheduling period without rigorous continuous forecasting at 

each time step, thereby reducing intensive computation. The optimal generation is denoted as  

(PG
l ). By accurately estimating the first-time step generation day-ahead, the framework 

schedules the refrigerators at the first timestep using the proposed rule-based peak shaving 

algorithm before the actual generation data for the first timestep arrives. This initial (PG
l )  value 

is subsequently updated in real-time across the scheduling period using a smoothing error 

method in Algorithm 3.  

To determine the first timestep value of (PG
l ) for the scheduling day, an optimization 

problem is formulated based on historical data on solar power, power demand, and battery 

discharge data. The objective function of the optimization is formulated in (8), with the optimal 

generation (PG
l ) as the decision variable. To solve for (PG

l ) , a parameter-tuned grey wolf 

optimizer (GWOP) based on grid search tunning method is proposed in Algorithm 2. In this 
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work battery discharge data was not considered in the testing since data was not available. The 

GWOP finds an optimal value of (PG
l ) that makes the expression in (8) zero. 

 

f(PG
l ) = ∑ PD(t) − (PG

l (t) + PSolar(t) + Edisch(t))
T
t=1                        (8) 

 

In (8), PD, PSolar and Edisch are power demand, solar power, and battery discharge 

historical data respectively. The optimization problem is constrained by a lower limit 

(P G 
l (lower )) and an upper limit (PG

l  (upper)). The lower limit and upper limit are the 

minimum and maximum generation that can be supplied by the system operator. The 

pseudocode for determining the optimal generation (PG
l ) is given in Algorithm 1.  

  

Algorithm. 1. Determination of day-ahead optimal generation 

Step Start determination of day-ahead optimal generation at first timestep 

1 Inputs data: historical demand (𝑃𝐷), historical solar power generation (𝑃𝑠𝑜𝑙𝑎𝑟) 

2 Output: Optimal generated power (𝑃𝐺
𝑙 ) 

3 Solver initialization  

4 Call objective function based on equation (4.22) 

5 Set constraints: 

   Lower limit: 𝑃 𝐺 
𝑙 (𝑙𝑜𝑤𝑒𝑟 ) 

   Upper limit: 𝑃𝐺
𝑙  (𝑢𝑝𝑝𝑒𝑟) 

6 Initialize solver and set its parameters 

7 For 𝑖 = 1: number of iterations  

8       Solve for optimal solution  

9       𝑖 = 𝑖 + 1 

10 End For 

11 Output Optimal solution as (𝑃𝐺
𝑙 ) 

12 End 

 

2.3. Proposed Parameter Tunned Grey Wolf Optimizer for Determination of Optimal 

Generation for First Timestep of Scheduling Period 

 

In this paper, a grid search tunning method is employed to tune the classical grey wolf 

optimizer (GWO) to tune its parameters to enhance the algorithm’s performance to solve for 

the optimal generation limit (PG
l ). The classical grey wolf is explained below followed by the 

proposed parameter tuned grey wolf optimizer (GWOP). 

 

2.3.1 Grey Wolf Optimization  

The Grey Wolf Optimizer (GWO)  [28] is based on the hunting behavior of grey wolves. 

Grey wolves are social predators that hunt in packs. This hunting behavior enables them to 
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demonstrate a high degree of cooperation and strategy in their hunting behavior. Each wolf in 

the pack has a specific role. The alpha (best wolf) wolf leads the hunt, while other members 

follow its lead and assist in different capacities. The alpha (optimal solution) wolf is the 

dominant leader, responsible for deciding when and where to hunt. The beta wolf assists the 

alpha, taking on leadership roles when necessary. The beta wolves represent the second-best 

solution that help guide the search process and provide a search path for the alpha. Delta wolves 

assist in hunting and protection. They represent the third-best solution in the search space and 

support the alpha and beta in the optimization process. 

 

2.3.2. Mathematical Modelling of Metaheuristic Processes of GWO 

      The hunting mechanism of the grey wolves is characterized by a coordinated and 

strategic approach that involves several phases. The phases have been discussed below. 

 

Tracking, Chasing, and Approaching the Prey 

The wolves track and chase prey, using their sense of smell and hearing to locate it. This 

is an approach to cautiously get as close as possible to the prey without being detected. The 

wolves (candidate solutions) encircle the prey by updating their positions based on the distance 

from the alpha, beta, and delta wolves using (10). 

  

D⃗⃗ =  |C⃗ ∙ X⃗⃗ p(t) − X⃗⃗ (t)|                                               (9) 

 

X⃗⃗ (t + 1) =  X⃗⃗ p(t) − A⃗⃗ ∙ D⃗⃗                                         (10) 

 

In the update equation, X⃗⃗ (t) is the position of a grey wolf, X⃗⃗ p(t) is the position of the 

prey and A⃗⃗  and C⃗  are coefficients vectors calculated with (11) and (12). 

 

A⃗⃗ = 2a⃗  ∙ r 1 − a⃗                                                       (11) 

 

C⃗ = 2 ∙ r 2                                                            (12) 

 

Pursuing and Encircling the Prey 

Once the prey is close enough, wolves pursue and encircle it, cutting off escape routes 

and exhausting the prey. The algorithm simulates encircling behavior by having each wolf 

adjust its position relative to the positions of the alpha, beta, and delta wolves. This is 

mathematically modelled to ensure the wolves move closer to the optimal solution. The update 

equation for this phase is given in (16). 

 

X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1  ∙ |C⃗ 1 ∙  X⃗⃗ α − X⃗⃗ |                             (13) 
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X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2  ∙  |C⃗ 2  ∙  X⃗⃗ β − X⃗⃗ |                           (14) 

 

X⃗⃗ 3 = X⃗⃗ δ − A⃗⃗ 3  ∙  |C⃗ 3  ∙  X⃗⃗ δ − X⃗⃗ |                           (15) 

 

X⃗⃗ (t + 1) =  
X⃗⃗ 1+ X⃗⃗ 2+ X⃗⃗ 3 

3
                                           (16) 

Attacking the Prey 

The wolves attack once the prey is exhausted or cornered, ensuring a successful hunt. 

The algorithm converges on the optimal solution. As iterations proceed, the search space is 

exploited more intensively, refining the candidate solutions to converge on the best solution. 

 

2.3.3. Proposed Parameter Tunned Grey Wolf Optimizer 

The GWO has been applied to successfully solve numerous optimization problems, 

however, its performance is sensitive to the algorithm’s control parameters; alpha (α), beta (β) 

and delta (δ) which affects the exploration and exploitation abilities of the wolves. The grid 

search tunning method is employed to systematically tune the GWO to enhance its exploration 

and exploration to solve for (PG
l ). The grid search methods employ a brute-force method to tune 

the hyper-parameters of the GWO. In the tunning method, a finite set of values for alpha (α), 

beta (β) and delta (δ) are generated. The GWO is then evaluated for every possible 

combination of these values. The combination that yields the best performance is selected as 

the optimal set of parameters finding the optimal value.  

 

2.4. Update of Optimal Generation  

 

In the proposed rule-based peak shaving algorithm, the optimal generation for the 

second timestep to the end of the scheduling period (T) is updated by accounting for the 

discrepancy between the actual generation at the first timestep and the historical data on the 

optimal generation over a time window (w). The proposed update approach utilizes a smoothing 

error technique [29]. To update the optimal generation (PG
l )  for the next timestep in the intra-

day’s decision-making, the error between the actual generation (PG
actual) at the first timestep 

and the optimal generation a day before (PG
l (t − 24)) is calculated over a predefined time 

window size (w) and averaged. The average error is then added to the first timestep optimal 

generation (PG
l (t)) to determine the next timestep's generation limit for the scheduling period. 

The update of the optimal generation limit (PG
l ) is done using (17) - (19). The error 

(et)  between the actual generation at the beginning of the current day (PG
actual(t)) and the 

optimal generation determined the day before (PG
l (t − 24)) is calculated using (17). Historical 



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

96 

data on this error is built over the forecasting period to calculate a smoothing error for real-time 

updates to the optimal generation limit (PG
l ). 

 

et = PG
actual(t) − PG

l (t − 24)                         (17) 

 

The smoothing error over a predefined time window size w, is calculated as an 

average error using (18). 

et̅ =
1

w
∑ ei

t
i=t−w+1                                              (18) 

 

The optimal generation limit is then updated by (19). The pseudocode in Algorithm 3 

provides the detailed steps for the error calculation and generation (PG
l )  update. 

 

PG
updated(t) = PG

l (t − 24) + et̅                       (19) 

 

of  (PG
l ). The proposed tunning algorithm is given in Algorithm 2. 

 

Algorithm. 2. Proposed algorithm for tunning grey wolf optimizer 

Step Start parameter tunning of grey wolf optimizer (GWOP) 

1 Inputs:   

2 Parameter ranges for alpha 𝛼 ∈ [ 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] with step size ∆𝛼 

3 Parameter ranges for alpha 𝛽 ∈ [ 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] with step size ∆𝛽 

4 Parameter ranges for alpha 𝛿 ∈ [ 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] with step size ∆𝛿 

5 Number of iterations T, population size (P), objective function 𝑓(𝑥) 

6 Outputs: 𝛼𝑜𝑝𝑡, 𝛽𝑜𝑝𝑡, 𝛿𝑜𝑝𝑡 and 𝑓𝑏𝑒𝑠𝑡 

7 For 𝑖 = 1: 𝑇 

8       For alpha 𝛼 ∈ [ 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑖𝑛 + ∆𝛼,… , 𝛼𝑚𝑎𝑥]: 

9               For alpha 𝛽 ∈ [ 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑖𝑛 + ∆𝛽,… , 𝛽𝑚𝑎𝑥]: 

10                    For alpha 𝛿 ∈ [ 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛 + ∆𝛿,… , 𝛿𝑚𝑎𝑥]: 

11                        Evaluate GWO with current combinations of 𝛼,𝛽 and 𝛿 

12                        Calculate fitness score 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

13                    End  

14               End  

15        End  

16  If 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑓𝑏𝑒𝑠𝑡  

17     Set 𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

18     Set  𝛼𝑜𝑝𝑡 = 𝛼 

19     Set 𝛽𝑜𝑝𝑡 =   𝛽 

20     Set 𝛿𝑜𝑝𝑡 = 𝛿 

21 End if  

22 End for  

23 End grid search  
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2.5. Identification of Day-Ahead Peak and Off-Peak Periods  

 

In the proposed rule-based peak shaving algorithm, a logical algorithm is proposed in 

Algorithm 4 to identify peak and off-peak periods within day-ahead forecasted demand data 

(PD
′ ) relative to day-ahead forecasted generation (Pg

′). In the proposed algorithm, peak periods 

are identified based on the condition that PD
′ (t) > Pg

′(t) by a certain margin above the system 

operator’s base load. The base load is taken as the optimal generation (PG
l ) across the scheduling 

period in this work. The algorithm iterates through the dataset at each timestep (t) to identify 

periods where the demand exceeds generation by the chosen margin. The identified periods are 

labelled as peak durations and are characterized by their start and end times. This approach 

allows the algorithm to proactively make decisions in real-time based on the forecasted 

generation rather than waiting for actual generation data to arrive. 

 

Algorithm. 3. Update of optimal generation in real-time 

Step Start update of generation limit   

1 Inputs Data 

2 Define window size (w) 

Get day-before optimal generation  (𝑃𝐺(𝑑𝑎𝑦−𝑏𝑒𝑓𝑜𝑟𝑒)
 𝑙 )  

Get actual generation  (𝑃𝐺
𝑎𝑐𝑡𝑢𝑎𝑙)  

3 Output 

4 Updated generation limit (𝑃𝐺(𝑢𝑝𝑑𝑎𝑡𝑒𝑑)
𝑙 )  

5 Smooth error calculation based on averaging window approach  

6 While current timestep < last timestep of data 

7 When a new timestep’s generation data arrives:    

8     Calculate error with equation (17) 

9           If length of error history < w:   

10              Append error to error history  

11           Else 

12             Remove oldest error from history 

13             Append new error to error history  

14          End If  

15 Update generation limit with equation (19) 

16 Increment current timestep by 1 

17 Output updated generation (𝑃𝐺
𝑙 ) 

18 End 
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Algorithm. 4. Determination of peak and off-peak periods 

Step Start identification of peak and off-peak durations  

1 Initialization 

2 Get forecasted demand data (𝑃𝐷
′ )   

3 Get forecasted generation data (𝑃𝑔
′).  

4 Initialize peak durations as an empty list (to store peak durations) 

5 Set start time to 0 (to track peak starts) 

6 Loop through demand data 

7   For 𝑖 =  1 to length (𝑃𝐷
′ ):  

8         If  𝑃𝐷
′ (𝑖) > 𝑃𝑔

′(𝑖) by margin: 

9                If start time == 0, Set start time to 𝑖(mark peak start) 

10         Else if 𝑃𝐷
′ (𝑖) < 𝑃𝑔

′(𝑖): 

11                If start time!= 0, Calculate peak duration and save it in peak  

12                   durations list, the set start time to 0 (reset peak start)   

13                End If  

14         End If 

15     End for 

16 Handle end-of-Series Peak 

17    If start time != 0, calculate final peak duration 

18    End If     

19 Output 

20 Print peak durations as "Start Time, End Time" pairs. 

21 End 

 

2.6.Proposed Rule-Based Peak Shaving Algorithm 

 

This section discusses the proposed rule-based peak-shaving algorithm for scheduling 

refrigerators. The algorithm aims to monitor real-time power demand (PD) and generation (PG) 

data to take decisions to align demand with available generation capacity based on predefined 

rules.  The proposed algorithm is shown in Fig. 4. The peak and off-peak period controls are 

given in Algorithm 5, 6, and 7. The decision-making process of the proposed algorithm 

primarily involves establishing decision making parameter, peak and off-peak period control. 

During peak periods, the algorithm prioritizes turning OFF refrigerators to shave the peak 

demand. Conversely, during off-peak periods, the algorithm turns ON refrigerators to balance 

the overall demand. The algorithm's dynamic adjustment to real-time conditions is a critical 

feature. It updates the optimal generation (PG
l ) and other decision parameters based on the latest 

data received to ensure the power system's responsiveness to changing network conditions. 

Details of the controls within the algorithm are discussed below. 
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2.6.1. Decision Making Table 

The control table for decision-making in the algorithm is given in Table 1. The table 

summarizes the conditions under which the algorithm operates and the corresponding action to 

be taken to aggregate the refrigerators. The variable 𝑃𝐷 is the demand at current timestep and 

 𝑌 is the mismatch threshold. The mismatch threshold determines the acceptable level of power 

mismatch during peak and off-peak period control. The variable current refrigerator status (Si,t
b ) 

is the status of the ith refrigerator at time t, where 0 indicates OFF and 1 indicates ON. The 

variable new refrigerator status (Si,t
n ) is the new status of the ith refrigerator at time t determined 

by the algorithm`s control logic. Finally, the action description shows the action taken by the 

algorithm based on the current system conditions.  

 

Table 1. Peak and Off-Peak Decision-Making Conditions 

Condition 

Check 

Control 

Condition 

Current 

Refrigerator 

Status (𝐒𝐢,𝐭
𝐛 ) 

New 

Refrigerator 

Status (𝐒𝐢,𝐭
𝐧 ) 

Action 

Description 

Peak period && 

(PD
′ )  > (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

0 (OFF) 0 (OFF) Maintain TCL 

OFF 

Peak period && 

(PD
′ )  > (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

1(ON) 0 (OFF) Turn OFF TCL 

 Peak period 

&& 

(PD
′ )  ≤ (PG

l )  

If mismatch 

threshold (Y) is 

not exceeded 

Any Any Maintain status 

Off peak period 

&& 

(PD
′ )  < (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

1 (ON) 1 (ON) Maintain TCL 

ON 

Off peak period 

&& 

(PD
′ )  < (PG

l )  

If mismatch 

threshold (Y) is 

exceeded 

0 (OFF) 1 (ON) Turn ON TCL  

Off peak period 

&& 

(PD
′ )  ≥ (PG

l )  

If mismatch 

threshold (Y) is 

not exceeded 

Any Any Maintain status 
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Fig. 4.Proposed rule-based peak shaving algorithm 

 

2.6.2. Algorithm Initialization  

The proposed rule-based peak shaving algorithm is initialized as follows: 

 

Step Initialize algorithm  

1 Get real-time demand 𝑃𝐷(𝑡) 

2 Get history of previous optimal generation  (𝑃𝐺
𝑙 ) 

3 Run LSTM forecast and output  (𝑃𝐷
′ )  and  (𝑃𝑔

′), 

4 Run Algorithm 1: output optimal generation at first timestep (𝑃𝐺
𝑙 ) 
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Step Initialize algorithm  

5 Run Algorithm 4 on step 3: output peak and off-peak periods.  

6 Get critical temperature (𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) 

7 Get current compartment temperatures of all refrigerators: 𝜃𝑐 

 

2.6.3. Peak Period Handling  

During the peak periods, the algorithm’s rules are designed to reduce the demand to stay 

close to the real time generation (PG) by turning OFF as many refrigerators as possible. The 

number of refrigerators to be turned off by the algorithm is limited by the mismatch threshold 

(𝑌) . This action helps to shave the peak demand and prevent grid overload. The peak period 

control and decision-making steps are provided in Algorithm 5. 

 

Algorithm 5. Peak period handling 

Step Start peak period control and aggregation  

1 If 𝑡 is within a peak period:  

2 Calculate power mismatch=|𝑃𝐷
′ (𝑡) − 𝑃𝐺

𝑙 (𝑡)|  

3 If 𝑃𝐷
′ (𝑡) > 𝑃𝐺

𝑙 (𝑡),  

4 If current power mismatch >𝑌:  If no skip to the next timestep.    

5 Else 

6      For 𝑖=1 to N:                                          // start aggregation                                  

7           If 𝑆𝑖,𝑡
𝑏 =0, set new status: 𝑆𝑖,𝑡

𝑛 =𝑆𝑖,𝑡
𝑏                         

8           Else set new status: 𝑆𝑖,𝑡
𝑛 =0                                        

9           Begin warming of refrigerator 𝑖  

10           Start waiting time for next schedule of refrigerator 𝑖  

11 Update aggregated demand: 𝑃𝐷(𝑡) = 𝑃𝐷(𝑡)+ 𝑆𝑖,𝑡
𝑛 .𝑃𝑟 

12 If |𝑃𝐷(𝑡) − 𝑃𝑔
′(𝑡)| < 𝑌, break                     // stop aggregating   

13 Update mismatch threshold 𝑌 

14 Update 𝑃𝐺
𝑙 (𝑡) 

 

2.6.4. Off-Peak Period Handling  

During the off-peak periods, the algorithm’s rules are designed to turn ON refrigerators 

to increase the demand by utilizing the excess generation and preventing generation from going 

to waste.  The off-peak period controls and decision-making steps are provided in Algorithm 6.  

 

Algorithm 6. Off-peak period handling 

Step Start off-peak period control and aggregation  

1 If 𝑡 is within off-peak period:  
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Step Start off-peak period control and aggregation  

2 Calculate power mismatch=|𝑃𝐷
′ (𝑡) − 𝑃𝐺

𝑙 (𝑡)| 

3 If 𝑃′𝐷(𝑡) < 𝑃𝐺
𝑙 (𝑡) 

4 If current power mismatch >Y: If no skip to the next timestep.    

5 Else 

6        For 𝑖=1 to N:                                              // (start aggregation)          

7               If 𝑆𝑖,𝑡
𝑏 =1, set new status: 𝑆𝑖,𝑡

𝑛 =𝑆𝑖,𝑡
𝑏  

8               Else set new status: 𝑆𝑖,𝑡
𝑛 =1         

9               Begin cooling of refrigerator 𝑖  

10               Start waiting time for next schedule of refrigerator 𝑖 

11 Update aggregated demand: 𝑃𝐷(𝑡) = 𝑃𝐷(𝑡)+ 𝑆𝑖,𝑡
𝑛 .𝑃𝑟 

12 If |𝑃𝐷(𝑡) − 𝑃𝑔
′(𝑡)| < 𝑌, break                          // (stop aggregating)        

13 Update mismatch threshold Y 

14 Update 𝑃𝐺
𝑙 (𝑡) 

 

2.6.5. Proposed Dynamic Mismatch Threshold 

In the proposed rule-based algorithm, a dynamic adjustment is employed based on 

system conditions to adjust the mismatch threshold. A dynamic adjustor based on sigmoid 

function is proposed to smoothly adjust the mismatch threshold at each timestep based on the 

difference between actual generation at the previous timestep (PG(t − 1)) and actual demand 

at the previous timestep (PD(t − 1)). The dynamic thresholding method ensures that the 

algorithm adapts to changing system conditions more effectively to maintain a balance between 

demand and supply while avoiding the pitfalls of too tight or too loose thresholds. The sigmoid 

function provides smooth and continuous adjustment to prevent abrupt changes in refrigerator 

operation that could lead to instability. The dynamic adjustment is formulated in equation (20). 

 

Y(t) = Ybase(t) +
1

1+e
−k(PG(t−1)−PD(t−1))

                             (20) 

 

where Y(t) is the mismatch threshold and Ybase(t) is the base mismatch selected by the system 

operator. 

 

 

3. SIMULATION OF REFRIGERATOR COOLING AND WARMING BEHAVIOUR 

FOR TESTING PROPOSED RULE-BASED ALGORITHM 

 

The discrete thermal model of a vapor compressor refrigeration system (VCRS) is 

employed to simulate cooling and warming of refrigerator compartment in the testing phase of 
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the proposed rule-based peak shaving algorithm. The discrete models of the warm-up and cool-

down of the refrigerator compartment are given by equation (21) and (22) respectively.  

 

θc(t + ∆t) = (1 −
∆t

CL.Ri
) . θc(t) +

∆t

CL.Ri
. θa (t)                                  (21) 

 

θc(t + ∆t) = (1 −
∆t

CL.Ri
) . θc(t) +

∆t

CL.Ri
. θa (t) +

∆t

CL.Re
. θe(t)                (22) 

 

where  θc is the cabinet temperature at time t, CLis the heat storage capacity of cabinet, θa is 

the ambient temperature at time t, Ri is the thermal resistance of the insulation and θe is the 

evaporator temperature.                  

The cooling and warming behavior of the refrigerator is achieved with the controls in 

equation (23) where θcritical is the set threshold temperature. In the control, when S = 1, the 

refrigerator is turned ON and when S = 0 the refrigerator is turned OFF. 

 

θc(t + ∆t) = {
Cool,               θc(t) > θcritical, S = 1

Warm,            θc(t) < θcritical, S = 0
                    (23)  

 

The refrigerator power consumption is modelled according to equation (24). The 

refrigerator consumes rated power (Pr) when the compressor is ON and 0 when OFF.  

 

Pin(t) = {
0        ,  S = 0
Pr        ,  S = 1

                                          (24) 

 

The total power drawn by all the refrigerators within a timestep is given by equation 

(25). 

Ptotal(t) = ∑∑Si,tPin
i (t)

N

i=1

T

t=1

                                        (25) 

 

Algorithm 7 is used to simulate the thermal behavior of the refrigerators.  

 

Algorithm 7. Simulation of thermal behavior of multiple refrigerators 

Step Start simulation of thermal behavior of TCLs 

1 Inputs 

2 Number of refrigerators (N) 

3 𝜃𝑐
0 = [1,… ,𝑀]             // initial compartment temperature   

4 𝜃𝑎
0 = [1,… ,𝑀],            // initial ambient temperature  

5 𝜃𝑒
0 = [1,… ,𝑀],            // initial evaporator temperature  
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Step Start simulation of thermal behavior of TCLs 

6 ∆𝑡                     // time step  

7 Initialize all other parameters: 𝜃𝑟𝑒𝑓, 𝑃𝑟 

8 Simulation duration (T).   

9 Outputs: 

10 𝜃𝑐, Pin  

11 Main loop 

12 For ∆𝑡 =1: T 

13       For 𝑖 = 1: 𝑀 

14            If 𝜃𝑐(𝑡) < (𝜃𝑟𝑒𝑓)              

15                  Turn OFF 

16                  Update compartment temperature using equation (22) 

17                  Update refrigerator power (Pin) using equation (24) 

18           Else           

19                 Turn ON  

20                 Update compartment temperature using equation (23) 

21                 Update refrigerator power (Pin) using equation (24) 

22           End if 

23      End for 

24 End for 

25 End algorithm  

 

 

4. DESCRIPTION OF CASE STUDY SYSTEM, SIMULATION AND TESTING 

 

The study utilizes a dataset from Spanish Transmission Service Operators (TSO) 

spanning four years (2015-2018) [30] to test the proposed rule-based peak-shaving algorithm 

for scheduling refrigerators. The data includes electricity consumption, pricing, generation, and 

weather information. A unique aspect of this dataset is its granularity, offering hourly records 

for each variable. This level of detail is essential for accurately modelling and simulating the 

dynamic behavior of electricity demand and supply, which is critical for the study. The 

generation data comprises renewable energy sources i.e, solar and conventional energy sources 

i.e, thermal and geothermal. This mix of generation types allows for rigorous performance 

testing of the algorithm in a realistic and varied energy landscape.  

All generation sources except solar are combined as total generation to determine the 

optimal generation limit using Algorithm 1. The data mainly consist of hourly demand data. To 

test the scheduling ability of the algorithm, 30% of the hourly demand at each timestep is 

simulated as refrigerator demand to be scheduled. In the testing, 1000 refrigerators are 

simulated to represent the 30% demand at each hour.  The unit maximum power consumption 
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when a refrigerator is ON across the 48-hour period is given in Fig. 5. The day-ahead demand 

and generation forecast is done for December 30, 2018, and December 31, 2018. The optimal 

generation is determined for the first hour of December 30, 2018.  

Simulations were conducted on an Intel(R) Core (TM) i7-6600U CPU @ 2.60GHz 2.81 

GHz with 20.0 GB (19.9 GB usable) RAM using MATLAB simulation software. The 

parameters for simulating the rule-based peak shaving algorithm are given in Table 2. 

 

 

Fig. 5. Per unit rating of TCLs when ON for scheduling 

 

Table 2. Simulation parameters 

Parameter Value 

P G 
l (lower ) 0 MW 

P G 
l (upper ) Maximum historical generation  

T 48 hours 

Refrigerator power rating when ON (Pr) Based on Figure 4 

Mismatch sensitivity levels 0 kW, 500 kW, dynamic mismatch 

Population size of PGWO 100 

Number of refrigerators 1000 

Baseline status  Randomly generated 

θcritical 5 ℃ 

CL 1000 kW/℃ 

Ri 0.98℃/kW 

Re 0.09℃/kW 

Waiting time  20 Minutes 

Margin of identifying peak periods Demand exceeds generation by 5%  
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Parameter Value 

Base load for mismatch  500 kW 

θe Randomly simulated around -2℃ 

θa Real weather data for scheduling period 

Initial compartment temperature of 

refrigerators 

Randomly generated  

Batch Size 64 

Epochs 1000 

Learning rate 0.01 

 

4.1. Performance Evaluation Metrics  

 

To assess the performance of the proposed peak-shaving algorithm, the following 

metrics are considered. 

 

4.1.1. Peak Demand Reduction 

Peak demand reduction measures the extent to which the algorithm successfully reduces 

the highest electricity demand peaks during peak periods. It is calculated as the percentage 

decrease in peak demand after implementing the algorithm compared to the initial peak demand 

given by equation (26). 

 

Peak Demand Reduction (%) =
(Peak Demand Before − Peak Demand After)

Peak Demand Before
        (26) 

 

4.1.2. Energy Consumption 

The energy consumption analysis compares the total energy consumption before and 

after implementing the peak demand shaving algorithm. It assesses whether the algorithm 

effectively manages energy usage and leads to overall energy savings. Equation (27) is used to 

calculate the energy consumption increase or decrease. 

 

Energy Consumption Increase  (%) = 

 
(Total Energy Consumption After  − Total Energy Consumption Before)

Total Energy Consumption Before
      (27) 

 

4.1.3. Demand-Supply Mismatch 

Demand-supply mismatch metric quantifies the deviation between electricity demand 

and supply at any given time. It evaluates how well the algorithm balances demand and supply 

to minimize mismatches. This is calculated with equation (28) is used to calculate the demand 

and supply mismatch at each timestep during the scheduling period. 
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Demand − Supply  Mismatch = |Demand −  Supply |               (28) 

 

4.1.4. TCL Status Changes 

The TCL status changes metric refers to the frequency and magnitude of changes in the 

operating status (ON/OFF) of the TCLs in response to the algorithm's instructions. It evaluates 

the algorithm's ability to manage appliance operation efficiently while maintaining user comfort 

and minimizing disruptions. Equation (29) is used to calculate the total status changes of TCL 

during the scheduling period. 

 

Total Status Changes = ∑ |Si,t
b − Si,t

n |N
i=1                           (29) 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section presents discussions of the results obtained from implementing the 

proposed rule-based peak demand-shaving algorithm. The discussions focus on the impact of 

different scenarios of flexibility levels on the proposed algorithm’s effectiveness in peak 

shaving. The effectiveness is assessed based on peak demand reduction, total energy 

consumption reduction, refrigerator switching frequency, and the average mismatch between 

demand and supply. The results highlight the benefits and limitations of offering strict and 

dynamic flexibility into optimizing demand response programs. 

 

5.1. Scenario 1: Strict Flexibility Threshold  

 

The results of applying the proposed rule-based peak shaving algorithm with strict 

mismatch threshold is presented in Table 3. This scenario is simulated to assess the algorithm’s 

effectiveness for matching the demand exactly to the available generation at each timestep. 

 

Table 3. Performance Metrics for Strict Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  25107.83 MW 

Peak Demand Reduction  18.00% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1088485.3778 MWh 

Energy Consumption decrease  11.39% 

Total Status Changes in Refrigerators 13000 times 

Average Demand-Supply Mismatch  693.99 kW 
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Following the application of the proposed peak shaving algorithm, the peak demand was 

reduced from 30,619.00 MW to 25,107.83 MW, representing a significant reduction of 18.00%. 

This notable decrease demonstrates the algorithm's effectiveness in managing and lowering 

peak electricity demand, which is crucial for mitigating the need for costly peaking power 

plants, alleviating stress on the power grid, and potentially reducing electricity costs for 

consumers. Additionally, the total energy consumption decreased by 11.39%, from 

1,228,351.00 MWh to 1,088,485.38 MWh. This substantial reduction in energy consumption, 

a key indicator of the algorithm's effectiveness, highlights its ability to manage peak demand 

and achieve significant overall energy savings, which can contribute to more sustainable energy 

use and lower operational costs. However, the algorithm's strict mismatch threshold led to a 

high switching quantified in terms of total status changes in the refrigerators, with 13,000 status 

changes recorded. Each status change reflects a switch between ON and OFF states. While this 

frequent switching indicates the algorithm's responsiveness to maintain a tight balance between 

supply and demand, it may also pose a risk of increased wear and tear on the appliances, 

potentially reducing their lifespan and increasing maintenance costs. The average demand-

supply mismatch was 693.99 kW, reflecting the deviation between scheduled demand and 

available generation over the scheduling period. This mismatch arises due to the inherent 

difficulty in perfectly aligning demand with supply at every timestep, especially under the high 

variability of system conditions and the frequent switching triggered by the stringent mismatch 

threshold.  

Fig. 6 provides a detailed comparison of the scheduled demand, unscheduled demand, 

actual generation, and the updated optimum generation over the scheduling period, illustrating 

the performance of the peak shaving algorithm under the strict flexibility threshold.  

 

Fig.  6. Comparison of scheduled and unscheduled demand under strict flexibility threshold 
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5.2. Scenario 2: Base load as flexibility Threshold   

 

The results of applying the proposed rule-based peak shaving algorithm with a 

flexibility threshold of 500 kW across the scheduling period is presented in Table 4. This 

scenario is simulated to assess the algorithm’s effectiveness under some level of flexible 

threshold. 

 

Table 4. Performance Metrics for Base Load Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  24852.08 MW 

Peak Demand Reduction  18.83% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1081227.60 MWh 

Energy Consumption decrease  11.98% 

Total Status Changes in Refrigerators 3006 times 

Average Demand-Supply Mismatch  1118.64 kW 

 

After applying the peak shaving algorithm with a base load flexibility threshold, the 

peak demand was reduced from 30,619.00 MW to 24,852.08 MW, achieving an 18.83% 

reduction. This result shows a slightly higher peak demand reduction compared to the strict 

flexibility threshold scenario, with an additional reduction of 0.83%. This suggests that 

incorporating a flexibility limit can enhance the algorithm's effectiveness in reducing peak 

demand, allowing for more adaptable management of power usage. The total energy 

consumption after scheduling decreased by 11.98%, from 1,228,351.00 MWh to 1,081,227.60 

MWh. This is a marginal improvement over the strict flexibility threshold scenario, indicating 

that the use of a base load flexibility threshold not only maintains peak demand reduction but 

also results in greater overall energy savings. Moreover, the total number of status changes for 

refrigerators dropped significantly to 3,006. This is a substantial reduction compared to the 

strict flexibility scenario, indicating less frequent switching of TCLs. The decrease in switching 

events implies reduced wear and tear on appliances, potentially extending their lifespan and 

lowering maintenance costs, thereby highlighting the financial benefits of incorporating a 

flexibility threshold. However, the average demand-supply mismatch in this scenario increased 

to 1,118.64 kW. This higher mismatch suggests that while the flexibility allowance effectively 

reduces peak demand and energy consumption, it comes at the expense of a less precise 

alignment between demand and supply. This misalignment could lead to more frequent periods 

of surplus or deficit, impacting the overall efficiency of energy distribution.  
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Fig.7 compares the scheduled demand, unscheduled demand, actual generation, and 

updated optimum generation over the scheduling period, showcasing the impact of using a base 

load flexibility threshold on the peak shaving algorithm's performance.  

 

Fig. 7. Comparison of scheduled and unscheduled demand under base load flexibility threshold 

 

5.3.Scenario 3: Proposed Dynamic Flexibility Threshold  

 

The performance of the proposed rule-based peak shaving algorithm with dynamic 

flexibility thresholds is presented in Table 5. This scenario evaluates the effectiveness of the 

algorithm when the mismatch thresholds change dynamically based on system conditions. 

 

Table 5. Performance Metrics for Dynamic Flexibility Threshold Scenario 

Performance Metric Value 

Peak Demand Before  30619.00 MW 

Peak Demand After  24845.19 MW 

Peak Demand Reduction  18.89% 

Total Energy Consumption Before  1228351.00 MWh 

Total Energy Consumption After  1079489.82 MWh 

Energy Consumption decrease  12.12% 

Total Status Changes in Refrigerators 3006 times 

Average Demand-Supply Mismatch  1012.41 kW 
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Applying dynamic flexibility thresholds led to a peak demand reduction of 18.89%, 

lowering the peak demand from 30,619.00 MW to 24,845.19 MW. This is the highest peak 

demand reduction observed across all scenarios, surpassing the strict mismatch threshold 

(18.00%) and the 500 kW flexibility threshold (18.83%). The results indicate that dynamic 

flexibility thresholds enhance the algorithm's ability to manage and reduce peak demand more 

effectively by adapting to real-time system conditions. Total energy consumption decreased by 

12.12%, from 1,228,351.00 MWh to 1,079,489.82 MWh. This represents the most significant 

reduction in energy consumption among all scenarios, outperforming both the strict mismatch 

threshold (11.39%) and the 500 kW flexibility limit (11.98%). The greater decrease in energy 

consumption under the dynamic threshold scenario underscores the improved overall energy 

efficiency achieved by adjusting the thresholds dynamically. The total number of status changes 

for refrigerators was 3,006, consistent with the 500 kW flexibility threshold scenario and 

significantly lower than the 13,000 status changes observed in the strict mismatch threshold 

scenario. This consistency in status changes indicates that both the dynamic and base load 

flexibility thresholds can maintain refrigerator operations more reliably, reducing frequent 

switching and potentially lowering wear and tear and maintenance costs. The average demand-

supply mismatch for the dynamic flexibility threshold scenario was 1,012.41 kW. While this is 

lower than the mismatch observed with the 500 kW flexibility limit (1,118.64 kW), it is higher 

than the mismatch in the strict mismatch threshold scenario (693.99 kW). This suggests that 

although the dynamic flexibility thresholds improve peak shaving and energy efficiency, it 

introduces a certain level of mismatch between demand and supply. However, the mismatches 

are within acceptable ranges. 

Fig. 8 compares the scheduled demand, unscheduled demand, actual generation, and 

updated optimum generation over the scheduling period, illustrating the impact of dynamic 

flexibility thresholds on the performance of the peak shaving algorithm.  

 

 

Fig. 8. Comparison of scheduled and unscheduled demand under dynamic flexibility threshold 
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Fig. 9 provides a comparison of scheduled demand across the three flexibility threshold 

scenarios: strict (0 kW), base load, and dynamic flexibility thresholds. The mismatches across 

the three flexibility threshold scenarios: strict (0 kW), base load, and dynamic flexibility 

thresholds are compared in Fig 10. This comparison helps to highlight how each approach 

impacts demand scheduling, particularly during peak periods. 

 

Fig. 9. Comparison of scheduled demand for different scenarios 

 

 

Fig. 70. Comparison of supply and demand mismatch after scheduling for different scenarios 
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Under the strict scenario (0 kW flexibility), demand must precisely match generation, 

resulting in higher scheduled and peak demand with a low average mismatch (693.99 kW) but 

many status changes (13,000). The base load scenario (500 kW static flexibility) smooths out 

demand, lowering peak demand (24,852.08 MW) and status changes (3,006) at the cost of a 

higher mismatch (1,118.64 kW). The dynamic scenario, which adjusts thresholds in real-time, 

achieves the lowest scheduled and peak demand (24,845.19 MW) and reduces energy 

consumption by 12.12%, striking a better balance with a moderate mismatch (1,012.41 kW). 

 

 

6. CONCLUSION AND FUTURE WORK 

 

This study introduced a novel rule-based peak shaving algorithm with a dynamic 

mismatch threshold designed to schedule refrigerators for peak demand management and 

maintain system stability in environments with limited generation capacity. The proposed 

algorithm operates within a framework that enables decision-making in both day-ahead and 

real-time scenarios to effectively schedule refrigerators. By utilizing historical data on demand 

and generation, the algorithm determines an optimal generation limit that system operators can 

aim to meet a day in advance. This generation limit is a key decision variable that informs the 

rules developed for the peak shaving algorithm, which adjusts the status of refrigerators in real 

time. Additionally, the algorithm uses day-ahead demand forecasts to anticipate peak and off-

peak periods, allowing for dynamic adjustments that reduce peak demand during high-load 

periods and optimize excess generation usage during low-load times, thereby enhancing grid 

stability and balance. The effectiveness of the algorithm was evaluated using network data from 

the Spanish Transmission Service Operators (TSO) over four years, under various flexibility 

threshold scenarios. The analysis revealed significant insights into how different flexibility 

allowances impact demand response performance. The main findings are summarized as 

follows: 

Strict No-Flexibility Threshold: In this scenario, where there is no flexibility allowance 

(0 kW mismatch threshold), the algorithm led to a notable increase in peak demand by 2.93% 

and a rise in total energy consumption by 6.73%. This outcome demonstrates the drawbacks of 

a strict mismatch threshold, which necessitates frequent switching of TCLs. This frequent 

switching increases operational stress and energy consumption, although it efficiently utilizes 

excess generation during off-peak periods. The results also indicate that while this approach 

minimizes the average demand-supply mismatch, it imposes challenges in precisely matching 

supply and demand, especially under stringent conditions. 

Base Load Flexibility Threshold: With a higher mismatch allowance of 1000 kW, the 

peak demand showed a slight increase of 0.08%, and total energy consumption rose by 3.97%. 

While this scenario offers some improvement over the strict no-flexibility condition by 

reducing the total status changes and operational stress on appliances, it still results in higher 
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energy use. The increased flexibility helps better manage demand-supply alignment and reduce 

the frequency of TCL switching, suggesting that some flexibility can alleviate operational 

inefficiencies while still making effective use of excess generation during off-peak times. 

Dynamic Flexibility Threshold: The dynamic mismatch threshold scenario yielded the 

best results, with a substantial reduction in peak demand by 4.25% and a slight decrease in total 

energy consumption by 0.59%. This indicates that incorporating dynamic flexibility can 

significantly optimize demand response and enhance energy efficiency. The algorithm also 

reduced the total status changes in TCLs to 3,000, highlighting decreased switching frequency 

and less operational stress on appliances. The higher average demand-supply mismatch in this 

scenario suggests a well-balanced approach to managing demand and supply, effectively 

accommodating variations in grid conditions. 

The comparative analysis across these scenarios demonstrates the benefits of integrating 

dynamic flexibility into demand response strategies. The dynamic approach not only reduces 

peak demand and total energy consumption but also minimizes the operational impact on 

appliances, as evidenced by fewer status changes. These findings underline the potential for 

dynamic flexibility to enhance the effectiveness of demand response programs. 

Future research will focus on incorporating dynamic flexibility thresholds into demand 

response programs that integrate renewable energy sources. By dynamically adjusting 

flexibility thresholds based on real-time network conditions, such programs can significantly 

improve peak demand management and energy efficiency. Utilities and policymakers are 

encouraged to adopt flexible demand response strategies that adapt to changing conditions, 

leveraging the benefits of dynamic flexibility to ensure a more resilient and efficient power 

grid. 
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Abstract: Because the photovoltaic system performance is significantly influenced by the 

environmental factors, particularly temperature and irradiance, a right correlation 

between the number of series/parallel-connected photovoltaic modules with the inverter 

inputs must be achieved to guarantee the safety of all components and the system in its 

entirety, and a high efficiency in electrical energy production. This paper addresses these 

issues and presents the results in a very simple and illustrative manner very easily to be 

implemented in the design procedure of a photovoltaic system, 

 

 

 

1. INTRODUCTION 

 

According to the data published by the National Energy Regulatory Authority; 

Transelectrica - the transmission and system operator in Romania and the Romanian 

distribution companies, the number of prosumers at the end of October 2024 exceeded 

175,000, and the installed power of the photovoltaic systems (PVS) among them was over 2 

GW [1]. This explosion, from practically zero, occurred in 4 years and the pace continues to 

accelerate. This results in the need for increased attention to detail on the part of PVS 

designers and installers. 

In this paper we point out the management of the correlation between the number of 

series/parallel-connected photovoltaic modules with the inverter inputs in terms of voltage 

and current. 
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2. METHODOLOGY 

 

The main parameters of the PV modules used for the above analysis are: 

- Electrical data under standard test conditions (STC), irradiance GSTC = 1000 

W/m2, spectrum AM 1.5 and cell temperature TSTC = 25°C: Nominal max. 

power (Pmax), Opt. operating voltage (Vmp-STC), Opt. operating current (Imp-STC), 

Open circuit voltage (VOC-STC), Short circuit current (Isc-STC) 

- Temperature characteristics under nominal module operating temperature 

(NMOT), irradiance of 800 W/m2, spectrum AM 1.5, ambient temperature 

20°C, wind speed 1 m/s: Temperature coefficient of Voc (λV) expressed in 

%/oC, Temperature coefficient of Isc (λI) expressed in %/oC, Nominal module 

operating temperature (NMOT). 

The main parameters of the Inverter used for the above analysis are:  

- Max. input voltage (Vmax Inv), MPPT operating voltage range (Vmin MPPT, Vmax 

MPPT), Rated input voltage (Vr MPPT), Max. input current per MPPT (Imax MPPT), 

Max. short-circuit current (Isc MPPT). 

Due to the major impact of the environmental parameter (irradiance and ambient 

temperature Ta) on the PV modules output parameters, the simplified approach consisting of 

comparing the STC parameter with the inverter input ones is not an option. 

The relations that express the above variabilities are presented in detail in [2-10] and 

are applied for the “worst case scenarios” that affect the PV module parameters, based on the 

actual slope, β and azimuth, γ, namely: 

- for current and for operating voltage: that moment of a summer day with the 

greatest irradiance incident on the PV modules and the higher temperature of 

the modules which lead to the maximum values: Isc max and Imp max and to the 

minimum one: Vmp min: 

 

  𝐼sc max = 𝐼sc (𝐺𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥)  =  𝐼sc−STC  [1 +  
λ𝐼

100
∙ (𝑇𝑚𝑎𝑥 − 25)] 𝐺𝑚𝑎𝑥/𝐺𝑆𝑇𝐶  (1) 

 

 𝐼mp max = 𝐼mp (𝐺𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥)  =  𝐼mp−STC  [1 +  
λ𝐼

100
∙ (𝑇𝑚𝑎𝑥 − 25)] 𝐺𝑚𝑎𝑥/𝐺𝑆𝑇𝐶 (2) 

 

 𝑉𝑚𝑝 min =  𝑉𝑚𝑝 (𝑇𝑚𝑎𝑥) = 𝑉𝑚𝑝−𝑆𝑇𝐶 [1 +
λ𝑉

100
(𝑇𝑚𝑎𝑥 − 25)] (3) 

 

 𝑇𝑚𝑎𝑥 = 𝑇𝑎 𝑚𝑎𝑥 + (𝑁𝑀𝑂𝑇 − 20)𝐺𝑚𝑎𝑥 /800 (4) 
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- for voltage: that moment of a winter day with the lowest irradiance incident on 

the PV modules and the lowest temperature which goes to the maximum value 

for VOC max. 

 

 𝑇𝑚𝑖𝑛 = 𝑇𝑎 𝑚𝑖𝑛 + (𝑁𝑀𝑂𝑇 − 20)𝐺𝑚𝑖𝑛 /800 (5) 

 

 𝑉𝑂𝐶 max = 𝑉𝑂𝐶 (𝑇𝑚𝑖𝑛) = 𝑉𝑂𝐶−𝑆𝑇𝐶 [1 +
λ𝑉

100
(𝑇𝑚𝑖𝑛 − 25)] (6) 

 

The relations that must be fulfilled for a proper correlation between the number of 

series/parallel-connected photovoltaic modules with the inverter inputs are: 

- maximum number of series connected PV modules, Nsmax: 

 

 𝑁𝑠𝑚𝑎𝑥 ≤ 𝑉𝑚𝑎𝑥−𝐼𝑛𝑣/𝑉𝑂𝐶 𝑚𝑎𝑥 (7) 

 

- minimum number of series connected PV modules, Nsmin: 

 

 𝑁𝑠𝑚𝑖𝑛 ≥ 𝑉𝑚𝑖𝑛 𝑀𝑃𝑃𝑇/𝑉𝑚𝑝 𝑚𝑖𝑛 (8) 

 

- maximum number of parallel connected PV arrays, Npmax: 

 

 𝑁𝑝𝑚𝑎𝑥 ≤ 𝐼𝑚𝑎𝑥 𝑀𝑃𝑃𝑇/𝐼𝑚𝑝 𝑚𝑎𝑥 (9) 

 

 𝑁𝑝𝑚𝑎𝑥 ≤ 𝐼𝑠𝑐 𝑀𝑃𝑃𝑇/𝐼𝑠𝑐 𝑚𝑎𝑥 (10) 

 

 Inequalities (7-10) must be satisfied in all circumstances, but verifying them for the 

above mentioned “worst case scenarios” is sufficient for a good coordination between the PV 

module and inverter. 

 Another relation that ensures the optimum input d.c. voltage in the inverter, in terms 

of its efficiency, is very useful when the designer must select from multiple PV modules 

connection available. It should be noted that this condition is not mandatory to comply with. 

 

 𝑁𝑜𝑝𝑡 ≅ 𝑉𝑟 𝑀𝑃𝑃𝑇/𝑉𝑚𝑝 𝑆𝑇𝐶 (11) 

 

 

3. CASE STUDY FOR ROMANIA 

 

The minimum and maximum values for G and Ta result from Photovoltaic 

Geographical System (PVGIS) [11]. As a case study, see fig. 1 and 2 for Romania. 
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a. December     b. June 

Fig. 1. Daily average irradiance for the North of Romania 

 

 

a. December     b. Jne 

Fig. 2. Daily average irradiance for the South of Romania 

 

 In Romania, the maximum values of clear-sky irradiance (considered for the Gmax 

evaluation) and diffuse irradiance (considered for the Gmin evaluation), have a variation of 

aprox. 100 W/m2 between north and south and between winter and summer. 

The values for environmental parameters for Romania taken into calculation are: Gmax 

= 1100 W/m2, Ta max = 40oC, Gmin = 100 W/m2, Ta min = -25oC. 

 Considering the usual ranges for the thermal parameters of the PV modules: NOMT ∈ 

(40, 50) oC, λV ∈ (-0.5, -0.25) %/oC and λI ∈ (0.04, 0.08) %/oC, the graphical interpretation of 

Isc max / Isc STC = Imp max / Imp STC, Vmp min / Vmp STC and VOC max / VOC STC are depicted in fig. 3 and 

fig. 4. 
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Fig. 3. Isc max / Isc STC = Imp max / Imp STC variations for different thermal parameters of PV modules 

 

   

a. Vmp min / Vmp STC    b. VOC max / VOC STC 

Fig. 4. Voltages variations for different thermal parameters of PV modules 

 

To avoid the calculation of the actual parameters of the PV modules according to (1) – (6), 

for a fast dimensioning of a PV system located in Romania, we recommend verifying the next 

inequations, derived from (7) – (10) and based on the results from fig. 3 and 4: 

- maximum number of series connected PV modules, Nsmax: 

 

 𝑁𝑠𝑚𝑎𝑥 ≤ 𝑉𝑚𝑎𝑥−𝐼𝑛𝑣/(1.25 ∙ 𝑉𝑂𝐶 𝑆𝑇𝐶) (12) 

 

- minimum number of series connected PV modules, Nsmin: 

 

 𝑁𝑠𝑚𝑖𝑛 ≥ 𝑉𝑚𝑖𝑛 𝑀𝑃𝑃𝑇/(0.7 ∙ 𝑉𝑚𝑝 𝑆𝑇𝐶) (13) 

 

- maximum number of parallel connected PV arrays, Npmax: 

 

 𝑁𝑝𝑚𝑎𝑥 ≤ 𝐼𝑚𝑎𝑥 𝑀𝑃𝑃𝑇/(1.15 ∙ 𝐼𝑚𝑝 𝑆𝑇𝐶) (14) 

 

 𝑁𝑝𝑚𝑎𝑥 ≤ 𝐼𝑠𝑐 𝑀𝑃𝑃𝑇/(1.15 ∙ 𝐼𝑠𝑐 𝑆𝑇𝐶) (15) 
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Of course, relations (12) – (15) should be used only in the pre-dimensioning stage, 

when the designer is dealing with the choice of the PV system components, e.g. has the 

module and is looking for the inverter or vice versa, and are not intended to be a shortcut in 

the design process, i.e. to replace the computation of the PV module parameters in the “worst 

case scenarios” (1) – (6) followed by the fulfillment of (7) – (10). 
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Abstract: This research investigates the economic feasibility of transitioning a logistics 

company's fleet to electric vehicles (EVs). The study evaluates the economic viability of this 

transition by comparing the total cost of ownership (TCO) of EVs to that of traditional 

internal combustion engine (ICE) vehicles. Key factors considered in the analysis include 

vehicle purchase costs, operational expenses, energy consumption and costs, maintenance 

expenses, and government incentives. The study aims to quantify the potential financial 

benefits and drawbacks associated with EV adoption and to assess the overall economic 

viability of such a transition. The findings of this CBA provide valuable insights for logistics 

companies seeking to make informed decisions about their fleet electrification strategies. 

 

 

1. INTRODUCTION 

 

The transition to electric vehicles (EVs) is one of the most important transformations in 

the transportation sector globally. In recent years, this trend has extended beyond the passenger 

car segment, including the road freight transport sector. This process is being accelerated by a 

number of factors, including environmental concerns, diminishing fossil fuel reserves and their 

price volatility, evolving technologies, and governmental and international policies. 

Vehicles with internal combustion engines are a major source of air pollutants affecting 

public health, especially in urban areas. Since emissions from road transport are a major cause 

of air pollution and climate change, along with industry and energy, replacing vehicles with 

internal combustion engines with vehicles powered by electricity can significantly contribute 

to reducing these emissions. At the present time the electrification of road transport is 

considered a key solution for reducing these emissions and achieving international climate 

goals. 
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The transition to electric vehicles reduces dependence on fossil fuels, contributing to 

price stability and energy security. Fluctuations in oil and natural gas prices make the operating 

costs of internal combustion engine (ICE) vehicles less predictable. 

Electric motors provide more torque at low revolutions, which can improve vehicle 

performance, especially when starting and climbing.  

Lower electricity costs compared to fossil fuels and lower maintenance costs can lead 

to significant savings in the long run. 

Recent technological advances which have led to battery improvements, increased 

autonomy and the development of charging infrastructure make EVs increasingly attractive to 

users. 

Many countries and regions around the globe have implemented policies, regulations 

and financial incentives to promote the adoption of EVs, such as subsidies, tax and duty 

reductions, including in the freight sector. 

By electrifying their fleets, organizations not only demonstrate environmental 

leadership and dedication to sustainability, but also encourage wider adoption of EVs by other 

fleets and consumers, thus fostering significant societal change. 

A significant barrier to widespread fleet electrification is the absence of sufficient 

electric vehicle options in the pick-up truck, medium-duty, and heavy-duty classes, thereby 

constraining fleet managers' ability to fulfill operational needs. 

Concerns about the operational range and a lack of familiarity with the new technology 

are causing initial employee resistance to the electrification of the fleets. To address this initial 

employee resistance, awareness and education programs are required. For both fleet managers 

and employees, increasing their understanding of EV benefits can be achieved by emphasizing 

cost savings and environmental advantages via advertisements and workshops. 

Electrifying vehicles is challenging due to charging times and range limitations. 

Furthermore, public disapproval of EVs as potentially wasteful government expenditures can 

deter their integration into fleets.  

 

 

2. COST-BENEFIT ANALYSIS MODELS APPLICABLE IN THE TRANSPORT 

SECTOR 

 

Cost-benefit analysis (CBA) is an essential tool in the decision-making process, 

especially when significant investments are involved. This allows for systematic assessment of 

all aspects of a project, from a financial, social and environmental point of view, with the aim 

of determining whether the anticipated benefits outweigh the associated costs (fig. 1). CBA 

helps to clearly define a project's objectives and determine whether they are economically 

feasible. A sound cost-benefit analysis provides an objective justification for investment 

decisions, both for those involved in the decision-making process and for external stakeholders. 
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CBA helps to identify projects that offer the best cost-benefit ratio, thus ensuring an 

optimal use of financial resources. This allows the comparison of different project alternatives, 

thus facilitating the choice of the best option. Through the detailed assessment of all relevant 

factors, CBA enables the identification of potential risks and mitigation measures, thus reducing 

the chances of project failure. Through its transparency, CBA contributes to a better 

understanding of the impact of projects on the environment, society and economy. 

Cost-benefit analysis has multiple uses in the transport sector, from evaluating 

infrastructure projects, analyzing the operating costs of different modes of transport, comparing 

different propulsion technologies to assessing the impact of transport policies.  

  

 

Figure 1. Types of analyses for the transportation sector 

 

In their paper de Rus et al. [1] discussed the theoretical framework and practical rules 

for conducting CBA of transportation projects, focusing on economic evaluation methods and 

their implications for social welfare. 

Eremina and Sohn [2] realized a CBA evaluating four major alternative routes based on 

selected cost and benefit factors. The cost considered factors are transportation time, gauge 

difference, custom procedures and cross-border factors, costs being expressed in terms of days 

and hours and benefits in monetary units. They take into consideration as benefit factors the 

volume of cargo, industrial production of adjacent regions, access to natural resources, market 

size and investment climate. A transformation coefficient is used to translate physical time into 

monetary value, based on empirical findings that a 10% increase in transportation time reduces 

bilateral trade volume by 5%.  

Noel and McCormark [3] present a cost-benefit analysis comparing V2G-capable 

electric school buses to traditional diesel school buses, highlighting economic and 

environmental advantages. Although battery costs are often considered a barrier, sensitivity 

analysis shows that varying battery replacement costs have a relatively minor effect on the 

overall cost-benefit analysis. The analysis shows that the electric bus becomes cost-effective 
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primarily due to the V2G revenues.   

On the other hand, in their comparative cost-benefit analysis, Shirazi et al. [4] of 

alternatively fueled buses, compressed natural gas (CNG) and vehicle-to-grid (V2G) electric 

buses, concluded that diesel buses are the most cost-effective option, while CNG and eBuses 

have potential under specific conditions, such as infrastructure availability or future cost 

reductions.  They considered the economic viability of eBuses to be affected by high upfront 

costs, infrastructure requirements, battery-related challenges, temperature impacts, V2G 

revenue limitations, and regulatory hurdles.  

Park et al. [5] present a cost-benefit analysis of public service electric vehicles (EVs) 

with V2G capability, focusing on their operational savings and environmental impacts in 

sectors like school buses, waste collection trucks, and city buses. The analysis highlights that 

EVs are more cost-effective due to lower operational costs, environmental benefits, and 

additional revenue from V2G services. 

Pagliara et al. [6] propose a methodology to estimate the benefits and costs of 

stakeholder engagement (SE) in the transport decision-making process, including CBA for 

efficient resource allocation and Multi-Criterion Analysis (MCA) to evaluate the social utility 

of public projects. The methodology involves a detailed breakdown of all potential costs 

associated with SE activities, both direct and indirect. They highlight the significant positive 

impact of SE on the project's success and the importance of incorporating SE into the decision-

making process for transport projects. 

CBA can be used both before (ex-ante) and after (ex-post) the implementation of a 

project to assess its feasibility and effectiveness. Ex ante analysis helps in planning and 

decision-making, while ex post analysis evaluates the actual outcomes and lessons learned. 

Kelly et al. [7] studied the ex-ante and ex-post cost-benefit analyses of ten EU-funded 

transport projects across eight countries, revealing the deficiencies in ex-ante methodologies, 

while also highlighting the benefits and challenges of ex-post cost-benefit analysis. 

Filippi et al. [8] in their ex-ante assessment focuses on estimating the environmental, 

social, and economic impacts, such as pollutant emissions, traffic congestion, and costs, to 

ensure that the measures will effectively reduce negative externalities and improve urban 

mobility sustainability. 

In a study focused on the accuracy of ex-ante benefit-cost analyses (BCAs) in 

transportation realized by Odecka and Kjerkreitc [9], they concluded that ex-ante BCAs tend to 

underestimate benefits and overestimate costs and ex-post evaluations are essential for 

assessing whether projects deliver promised benefits and for identifying areas to improve ex-

ante BCAs. They enhance the credibility of BCAs as a decision-making tool and ensure 

informed investment decisions. 

Hajinasab et al. [10] studies various types of policy instruments aimed at changing the 

behavior of travelers categorized into three main types: economic, administrative, and 

informative. 
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In their paper de Bok et al. [11] analyze the potential transport impacts of a proposed 

distance-based heavy goods vehicle charge, using strategic transport models to assess various 

implementation scenarios and their effects on freight transport demand and logistics. 

Financial cost-benefit analysis evaluates the profitability of a project from the 

perspective of a private economic agent, considering only direct financial costs and benefits. 

Initial investments, operation and maintenance costs, generated income, and residual value of 

assets are considered. 

Economic cost-benefit analysis assesses the impact of a project on the entire economy, 

including both direct and indirect and external costs and benefits, considering effects on 

production, consumption, employment, tax revenues, as well as positive externalities (reduction 

of pollution, improvement road safety) and negative (noise, congestion). It is a method suitable 

for major infrastructure projects, such as building highways or high-speed railways. 

Cost-effectiveness analysis compares different alternatives to achieve a predetermined 

objective, identifying the most cost-effective option, based on the costs associated with each 

alternative and the level of achievement of the objective. It focuses on minimizing 

transportation costs to achieve a certain level of benefit and is useful when the budget is limited. 

This is a model that can be used for projects with well-defined objectives, such as reducing 

congestion or improving road safety. 

Whitmore et al. [12] treated the integration of shared autonomous vehicles into public 

transportation systems to enhance transit equity and cost-efficiency, particularly for transit-

dependent populations. 

Social cost-benefit analysis involves evaluating the impact of a project on social welfare, 

being suitable for projects with a significant impact on the quality of life, such as the 

development of public transport. 

Cost-utility analysis evaluates costs against benefits measured in units of utility (e.g., 

life years gained, travel time reduced). It is frequently used in infrastructure projects that affect 

public health or quality of life. 

Target costing analysis is a strategic cost management approach used to ensure that 

services meet customer expectations while maintaining profitability.  It involves setting a target 

cost, which is the maximum allowable cost for a service, and then designing the service to meet 

this cost while delivering desired functionalities and customer value. 

But CBA needs to evaluate the welfare impacts of a transport project by considering 

both the positive and negative effects on society. This includes environmental impacts, social 

inclusion, and economic development. 

Life-cycle assessment (LCA), which assesses the environmental impact of a product or 

service throughout its life cycle, from raw material extraction to waste disposal, is based on 

data such as energy consumption, greenhouse gas emissions greenhouse, waste production, 

water use. Based on this, the carbon footprint, respectively the ecological footprint, can be 

highlighted. The model finds its applicability in the case of the evaluation of vehicle 
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procurement projects or the development of intelligent transport systems.  

Manzo and Bang Selling [13] demonstrated the importance of the integration of LCA 

into traditional transport cost-benefit analysis (CBA) to better evaluate the environmental 

impacts of transport infrastructure projects, to better assess long-term sustainability and provide 

more comprehensive information for decision-making 

In the LCA realized by Rial and Pérez [14], climate change impacts are central to 

evaluating the environmental performance of heavy-duty propulsion technologies, as reducing 

greenhouse gas emissions is a key goal for sustainable transportation.  The study highlights the 

importance of addressing emissions not only during the use phase but also in fuel production 

and vehicle manufacturing. 

CBA has diverse applications within the transport sector, ranging from evaluating 

infrastructure projects and operating costs to comparing technologies and assessing the impact 

of transport policies. Different cost-benefit analysis methods are tailored to specific 

perspectives and objectives. 

The accuracy and effectiveness of CBA can vary depending on the stage of analysis. 

Ex-ante analyses are prone to underestimating benefits and overestimating costs, highlighting 

the importance of ex-post evaluations for learning and improving future analyses. 

The transport sector presents unique challenges and opportunities for CBA. Factors such 

as network effects, externalities (like pollution and congestion), and the long-term nature of 

infrastructure investments require careful consideration in CBA. For this reason, integrating 

other analytical tools with CBA enhances its comprehensiveness, like LCA to provide a more 

thorough evaluation of environmental impacts, leading to more sustainable decision-making. 

Multi-Criterion Analysis (MCA) can complement CBA by evaluating also the social utility of 

projects. 

The selection of the most appropriate evaluation method is project-specific and depends 

on the goals of the analysis. A thorough and well-executed analysis is essential for making 

optimal investment decisions in the transport sector, contributing to sustainable and efficient 

development. 

 

 

3. LIMITATIONS OF COST-BENEFIT ANALYSIS 

  

Cost-benefit analysis has several important limitations. First of all, assessing benefits 

such as improved quality of life can be difficult and subjective. The future is unpredictable and 

estimates of costs and benefits may be affected by external factors that are difficult to anticipate 

or estimate. Many times, CBA models involve simplifications of reality. 

Park et al. [5] highlight as limitations of CBA the sensitivity to assumptions such as 

diesel costs, electricity prices, battery lifespan, and maintenance costs. environmental cost 

estimation, uncertainty in V2G revenue, dependent on time-varying frequency regulation prices 
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and the ability to optimize charging and discharging schedules, the upfront cost of EVs, battery 

replacement costs, the limited scope, external factors and simplified models, which may not 

capture real-world complexities.  

Even though their paper only refers to the evaluation of transport infrastructure projects, 

Jones et al. [15] capture very precisely the weaknesses of the Cost-Benefit Analysis, which can 

be extended to other transport investments. They highlight inaccuracy in traffic forecasts, cost 

estimation errors, environmental impact assessment, regional and local impact, and sensitivity 

to assumptions. Underlining the significant impact of discount rates on CBA, affecting the Net 

Present Value (NPV) of a project, they highlight that higher discount rates reduce the present 

value of long-term benefits, favoring projects with immediate returns over those with long-term 

impacts and this can lead to the neglect of projects with substantial future benefits, such as 

environmental sustainability initiatives. 

Multi-criteria analysis evaluates projects, as the name suggests, based on several 

criteria, both quantitative and qualitative, namely economic, social, environmental, political 

criteria, which can be difficult to quantify in monetary terms.  

Annema et al. [16] discuss the perspectives of Dutch transport politicians on the use of 

CBA and multi-criteria decision-making (MCDM) as appraisal tools in transport policymaking. 

While CBA provides a clear efficiency criterion through monetary valuation, MCDM offers 

flexibility in incorporating qualitative criteria and stakeholder opinions.  Both methods have 

their strengths and limitations, and a combination or new approach focusing on clear trade-offs 

and transparency might better support transport policy decision-making. 

Used for evaluating projects under conflicting criteria, MCA is particularly useful when 

non-monetary factors need to be considered alongside economic impacts [1]. 

Fekpe et al. [17] describes the development of a multi-criteria systems-based benefits 

assessment framework for evaluating transport research projects, based on systems theory, 

which views benefits assessment as an open system composed of interacting and interdependent 

subsystems. This approach allows for the assessment of benefits across multiple dimensions, 

including economic, social, environmental, and user satisfaction. 

Mann and Levinson [18] present an alternative approach to cost-benefit analysis for 

transport investments, focusing on access-based valuation through hedonic pricing models to 

better quantify project benefits compared to traditional travel time savings methods. This 

approach aims to provide a more accurate and comprehensive evaluation of transport projects 

by considering land use and economic impacts, avoiding the common issue of forecast 

inaccuracy associated with traditional travel-time savings methods. 

Computable General Equilibrium Models (CGE) are recommended for mega-projects 

where some requirements for CBA are not satisfied.  CGE models analyze the broader 

economic impacts, such as changes in gross value added or employment, and adapt these to 

produce monetary measures of welfare changes. 
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The choice of a suitable CBA model depends on the specifics of each project and the 

objectives pursued. A rigorous and comprehensive analysis can contribute to an optimal 

investment decision in the transport sector, ensuring a sustainable and efficient development of 

transport infrastructure and services. 

CBA models often simplify complex realities, and this can lead to an incomplete picture 

and may not capture all relevant real-world dynamics. 

The outcomes of cost-benefit analyses are heavily dependent on the initial assumptions 

made. Variables such as discount rates, fuel expenses, maintenance costs can substantially alter 

the results of a CBA, in real conditions, in a very dynamic business environment. 

 

 

4. COST-BENEFIT ANALYSIS IN THE ELECTRIFICATION OF THE FLEET OF 

DELIVERY VEHICLES 

 

A large amount of data is needed to assess the feasibility and profitability of switching 

to a fleet of electric delivery vehicles. 

First, data on the current fleet of vehicles, the existing infrastructure, as well as data on 

electric vehicles and the infrastructure required for them are needed. In connection with these, 

financial and operational data are required, as well as environmental and social impact data. 

And finally, data on uncertainties and risks are needed. 

Rodríguez-Molina et al. [19] based on their model for the cost-benefit analysis of 

privately owned Vehicle-to-Grid (V2G) relieved that V2G technology is more economically 

efficient in the long term compared to Internal Combustion Engine (ICE) vehicles, due to lower 

operational costs, including maintenance and fuel (electricity) costs. For professional drivers, 

V2G solutions become economically advantageous almost immediately, while for frequent 

drivers, V2G solutions become more cost-effective after the first year and for occasional 

drivers, after 3 to 4 years.  They considered in their analysis the impact of battery degradation, 

energy trading, battery leasing vs. ownership and externalities, such as health impact costs, 

carbon emissions, and the social cost of carbon. 

Christensen and Christensen [20] compare electric and diesel vehicles across several 

key cost components, including investment, operation, maintenance, environmental impact, 

noise, refueling/switching time, and marginal excess tax burden (METB). The methodology 

used in the analysis involves conducting a CBA to evaluate the socio-economic impacts of 

purchasing and operating an EV compared to a diesel vehicle. They considered as indirect 

benefits the improved air quality and reduced greenhouse gas emissions. The Social Discount 

Rate (SDR) is determined through a combination of empirical data and theoretical models. 

Empirically derived discount rates are based on market data and include Marginal Rate of 

Return on Private-Sector Investments (r), Social Marginal Rate of Time Preference (p) and 
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Government’s Real Borrowing Rate (i). The theoretically derived discount rates are based on 

Optimal Growth Rate Model (Ramsey Model). 

Lavee and Parsha [21] evaluate three levels of government support: basic, medium, and 

high, considering the costs and benefits associated with purchase subsidies, investment in 

public charging infrastructure, and taxation of private use of company cars. The analysis shows 

that only the basic level of government support passes the cost-benefit test, yielding a positive 

net benefit, while medium and high support levels result in net negative benefits, indicating that 

the costs exceed the benefits. 

The methodology used in a study realized in 2018 [22] involved evaluating the costs 

and benefits of two different levels of plug-in electric vehicle (PEV) penetration in Arizona 

between 2030 and 2050.  The study compared a "Moderate PEV" scenario, which aligns with 

the transportation electrification goals in Arizona Corporation Commissioner Andy Tobin’s 

2018 Draft Energy Modernization Plan, and a "High PEV" scenario, which includes more 

aggressive PEV penetration levels. Cost calculations include costs for electricity generation, 

transmission, incremental peak generation capacity, and infrastructure upgrades. They also 

calculated the NPV of total societal benefits, including cost savings to drivers, utility customer 

savings, public charger owner benefits, and the monetized value of reduced emissions. 

In a similar study realized in Florida [23], PEV adoption in Florida offers substantial 

economic, environmental, and societal benefits. But achieving high penetration levels requires 

coordinated policy efforts and infrastructure investments.  Managed charging strategies can 

maximize benefits for both drivers and utility customers. 

In a TNO report, Tol et al. [24] provides a cost-benefit analysis of adopting zero-

emission vehicles, ZEVs, for medium trucks (7.5-16 tons) and tractor-trailer trucks (>32 tons) 

across various EU+UK countries, focusing on road tolls, energy consumption, vehicle prices, 

and maintenance costs. 

A wide range of scenarios can be considered for a cost-benefit analysis in electrification 

of the fleet for a logistics company. 

First, the results may differ substantially depending on the type of vehicle and the type 

of electric drive. This includes hybrid electric vehicles (HEV), plug-in hybrid electric vehicles 

(PHEV), battery electric vehicles (BEV) and vehicles equipped with vehicle-to-grid technology 

(V2G).  

By feeding energy back into the grid during peak demand and high electricity prices, 

V2G could generate revenue. This capability could significantly enhance their cost-benefit 

profile, counteracting charging costs and potentially yielding profits. At the same time, V2G-

enabled charging strategies offer a pathway to higher NPV by generating additional cash flows 

from grid electricity sales.  

In their paper Bagheri Tookanlou et al. [25] based on a cost-benefit analysis, propose a 

strategy reduces the cost of electric vehicles (EVs) by 18% and increases the revenues of EV 

charging stations (EVCSs) and electricity suppliers (ESs) by 21% and 23%, respectively, 
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compared to the scenario where EVs do not use the strategy for vehicle-to-grid (V2G) and grid-

to-vehicle (G2V) operations. 

But it is very important, however, to incorporate battery degradation costs into the 

financial model, as these could offset long-term profitability. Therefore, it's necessary to 

analyze how the frequency of discharging power to the grid affects battery lifespan and the total 

number of batteries required throughout the truck's operational life. 

In order to prepare a cost-benefit analysis it has to identify the types of costs associated 

with the introduction or replacement of the existent fleet with a fleet of electric vehicles (fig. 

2). The costs could be classified as regards investment costs, maintenance and operational costs. 

Investment costs referred to prices of vehicles and the additional related to purchase, 

costs of battery replacement and the costs related to charging infrastructure. 

So, the total investment expenditure (IEV) to support of the transition to electric vehicles 

is the sum of several distinct capital outlays: the purchase price of the vehicles (Pvehicle), 

additional taxes, registration fees, and initial insurance premiums (Fregulatory), the present value 

of future battery replacement costs (PVbattery_replacement), and the costs associated with the 

acquisition and installation of charging infrastructure (Ccharging_infrastructure). 

 

IEV = Pvehicle + Fregulatory + PVbattery_replacement + Ccharging_infrastructure  (1) 

 

Purchase price of fleet (Pvehicle) represents the initial capital outlay for acquiring the 

electric vehicles. For a fleet of n vehicles, each with a price pi, the total purchase price is: 

 

𝑃𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = ∑ 𝑝𝑖
𝑛
𝑖=1      (2) 

   

The additional taxes, registration fees, and initial insurance premiums (Fregulatory) 

encompass all mandatory initial costs associated with registering and insuring the vehicles of 

the fleet for operation, including sales taxes, registration fees, and the first insurance premium.  

 

𝐹𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦  =  ∑ (𝑇𝑡𝑎𝑥,𝑖 + 𝐹𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 + 𝑃𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒,𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )𝑛

𝑖=1    (3) 

 

Present value of future battery replacement costs (PV battery_replacement) represent the future 

expense of replacing the vehicle batteries over their operational lifespan, discounted to its 

present value. This requires estimating the battery replacement cost (Cbattery_replace), the time until 

replacement (treplace), and the discount rate (r), taking into considerations that batteries may need 

replacement at different times for different vehicles based on usage and degradation. 

 

𝑃𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = ∑
𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑖

(1+𝑟)
𝑡𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑖

𝑛
𝑖=1     (4) 

 

Costs associated with the purchase and installation of charging infrastructure 

(Ccharging_infrastructure) include all expenses related to acquiring and setting up the necessary 

charging infrastructure: the cost of the charging units (Ccharger), installation costs (Cinstallation), 
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any required electrical upgrades (Celectrical_upgrade), and potential land or permitting costs (C 

permitting). 

 

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∑ 𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟,𝑖 + ∑ 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛,𝑗 + 𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒 + 𝐶𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑛𝑔
𝑚
𝑗=1

𝑚
𝑗=1  

(5) 

The general repair and maintenance expenditure (MEV) for a fleet of n electric trucks 

over a specific operational period (Δt) can be determined as the sum of costs associated with 

scheduled maintenance (Cscheduled), unscheduled repairs (Cunscheduled), tire replacements (Ctires), 

and other miscellaneous maintenance activities (Cmisc).  

 

(6) 

 

Scheduled maintenance costs (Cscheduled,i) are the costs associated with routine 

maintenance tasks performed at predetermined intervals (based on time or mileage) as 

recommended by the manufacturer. These tasks typically include inspections, lubrication of 

specific components (if any), brake system checks, cooling system maintenance for the battery 

and electronics, and software updates. The cost can be modeled as a function of the frequency 

of these services (fscheduled,i) and the average cost per service event (𝑐𝑠̅𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑,𝑖) 

 

(7) 

 

Unscheduled repair costs (Cunscheduled,i) are the costs incurred due to unexpected 

breakdowns or failures of vehicle components requiring repair or replacement outside the 

regular maintenance schedule. These can include issues with the electric powertrain (motor, 

inverter, power electronics), battery system faults (excluding full replacement, which is 

typically treated as a separate investment cost), braking system malfunctions, suspension issues, 

and other electrical or mechanical failures. The occurrence of these repairs is often stochastic 

and can be modeled using failure rates (λcomponent) for various components and their respective 

repair costs (crepair,component). Over a period Δt, the expected cost can be complex to model 

precisely, but can be estimated based on historical data or reliability predictions 

 

(8) 

 

Tire replacement costs (Ctires,i) represent the costs of replacing tires due to wear and tear 

or damage. The frequency of replacement depends on factors such as mileage, load, driving 

conditions, and tire quality. The cost can be modeled based on the number of tire sets replaced 

(ntires,i) during the period and the cost per set (𝑐𝑡̅𝑖𝑟𝑒𝑠,𝑖). The number of replacements can be 

estimated based on the average tire lifespan and the total mileage of the truck. 

 

          (9) 
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Miscellaneous maintenance costs (Cmisc,i) includes other periodic or occasional 

maintenance expenses not covered in the above categories, such as wiper blade replacements, 

fluid top-ups (e.g., coolant, brake fluid), light bulb replacements, and minor bodywork repairs. 

These costs are often relatively small but contribute to the overall maintenance expenditure, 

being tracked as a total sum over the period. 

       

      (10) 

 

Regarding the maintenance electric vehicles generally have fewer moving parts than 

diesel trucks, resulting in less wear and tear and reduced maintenance requirements. While 

generally lower, maintenance of the electric motor, power electronics, and battery management 

system requires specialized knowledge and tools. 

The operational expenditure (OEV) of electric vehicles comprises distinct cost 

components incurred over a defined operational period (Δt): electricity consumption (Celectricity), 

insurance premiums and related taxes (Cinsurance_taxes), charging infrastructure use (Ccharging), 

drivers costs (Csalaries), and fleet management expenses (Cfleet_management).  

 

𝑂𝐸𝑉(∆𝑡) = ∑ (𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 𝐶𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑡𝑎𝑥𝑒𝑠
+ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 𝐶𝑠𝑎𝑙𝑎𝑟𝑖𝑒𝑠 + 𝐶𝑓𝑙𝑒𝑒𝑡𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡∆𝑡  (11)

  

 

Figure 2. Cosst associated with the fleet electrification in a logistics company 

 

Electricity consumption cost (Celectricity) is determined by  the total energy consumed (E) 

by the vehicle during operation and the unit cost of electricity (pelectricity) 

 

Celectricity = E⋅pelectricity     (12) 
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The energy consumption (E) is a function of factors such as distance traveled (d), vehicle 

energy efficiency (ηvehicle in kWh/km), and auxiliary power demands. 

Insurance and related taxes (Cinsurance_taxes) encompasses the periodic insurance 

premiums (Pinsurance) and any applicable taxes or fees directly associated with vehicle ownership 

and operation (Tvehicle). These costs are typically assessed over a specific time interval (e.g., 

annually) and must be prorated for the operational period Δt. 

 

 Cinsurance_taxes = Pinsurance + Tvehicle     (13) 

 

Charging infrastructure utilization cost (Ccharging) is associated with the energy sourced 

for recharging the vehicle. For private charging, it is typically included within Celectricity. For 

public charging infrastructure, it includes the energy consumed during charging (Echarge), the 

unit cost of electricity at the charging point (pcharging), and any additional fees associated with 

the charging service (e.g., per-session fees, subscription costs, Fcharging): 

 

Ccharging = Echarge ⋅ pcharging + Fcharging    (14) 

  

Charging strategies and infrastructure are critical factors influencing the economics of 

EV fleets. If it is necessary to charge the vehicle during working hours, reducing the duration 

of vehicle travel corresponding to the periods for charging results in an increase in payroll 

expenses in relation to the distance traveled. The need for multiple charging stops in long-haul 

e-truck delivery routes diminishes productivity and drives up driver costs. 

Opportunity charging can help integrate renewable energy into the grid by charging 

during periods of excess solar or wind energy availability. By charging trucks during idle 

periods between trips, opportunity charging avoids creating high peaks in electricity demand.  

The avoidance of high electricity demand peaks, achieved through charging trucks during inter-

trip idle periods, serves to mitigate network costs. Thus, operators can optimize costs and 

maintain uninterrupted service. 

Low-capacity charging offers the flexibility to charge trucks at lower power levels (e.g., 

22 kW), which can translate to better cost efficiency than relying solely on faster, high-capacity 

charging.  

Smaller fleets can more easily manage charging to align with their depot's general 

electricity consumption. However, for larger fleets, charging needs become the primary 

concern, overshadowing the impact of other depot consumption on overall costs. They need 

load management solutions to optimize electricity consumption by avoiding peak demand and 

aligning with lower electricity prices.  

Strategically placing depots in areas with well-developed power infrastructure is another 

way to mitigate network connection costs and fees. 
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Human resource cost (Csalaries) represents the wages and benefits paid to drivers, the 

personnel directly involved in the operation of the vehicle. It is a function of the labor hours (h) 

dedicated to vehicle operation and the applicable wage rate (w). 

 

Csalaries = h x w     (15) 

 

For commercial operations, this may also needs to include considerations for charging 

time that impacts driver availability and efficiency. 

Fleet management expenses (Cfleet_management) include costs associated with the overall 

management and administration of a fleet of electric vehicles, encompassing software 

subscriptions for tracking and optimization (Csoftware), maintenance of charging infrastructure 

(Cinfrastructure_maintenance), personnel costs for fleet management (Cmanagement_personnel), and other 

administrative overheads (Oadministrative). 

 

Cfleet_management = Csoftware + Cinfrastructure_maintenance + Cmanagement_personnel + Oadministrative  (16) 

 

In what it concerns the benefits, they are mainly generated by the fuel cost savings, 

maintenance cost reduction and avoided emission costs comparing with ICE vehicles. 

Comparing to diesel trucks, they generate lower maintenance costs per kilometer, due to a 

reduced frequency of repairs and significantly lower costs with consumables. Electric trucks 

will have zero for pollutants like NOx, particulate matter, CO and greenhouse gas emissions. 

These savings can make EVs more economically efficient in the long term compared to 

internal combustion engine vehicles. 

In this study there had been analyzed the comparative cost-benefit of integrating 

different truck technologies—ICE, HEV, PHEV, and BEV—into the fleet of a logistics 

company. The analysis considers the acquisition of 200 trucks over an 8-year operational 

lifespan, employing a discount rate of 7%. The simulation of various scenarios was conducted 

using MATLAB. 

 

 

Figure 3. NPV and TCO for different types of freight vehicles 
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Key findings from the financial analysis, encompassing NPV, TCO and Cost-Benefit 

Ratio (CBR), reveal as the most economically advantageous being BEV (fig. 3, table 1). The 

input data is specific to the Romanian freight vehicle market and electricity prices in Romania. 

 

Table 1. Financial results of the simulation 

Type of 
vehicle 

Total Cost of 
Ownership (TCO) 

Net Present Value 
(NPV) 

Cost-Benefit 
Ratio (CBR) 

ICE 13,428,385.62 EUR 6,069,731.95 EUR 0,69 

BEV 10,107,219.62 EUR 9,585,879.13 EUR 0,51 

HEV 12,051,173.93 EUR 7,544,434.23 EUR 0,62 

PHEV 11,362,568.08 EUR 8,281,785.38 EUR 0,58 

 

The study also summarizes the impact of sensitivity analyses conducted on electricity 

prices and various charging scenarios for BEV and PHEV trucks, highlighting the factors that 

significantly influence their profitability. 

In the case of the sensitivity analysis of NPV depending on the price of electricity, its 

increase influences BEVs the most, which was expected, given that electricity is the only source 

of energy for them (fig. 4). 

 

 

Figure 4. Sensitivity analysis NPV vs. electricity price 

 

The sensitivity analysis of NPV considering annual revenue reveals an increasing with 

about 40% with an increase of only 20% in transport revenues (fig. 5). 
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Figure 5. Sensitivity analysis NPV vs. annual revenue 

 

Taking into account the economic context, it is also important to conduct a sensitivity 

analysis of the discount rate to see how it influences the level of discounted net income. This 

reveals for all types of vehicles a halving of the NPV at an increase in the discount rate from 

0.05 to 0.15 (table 2). 

 

Table 2. Sensitivity analysis NPV vs. discount rate 

Discount 
Rate  

Diesel NPV 
(EUR) 

Electric NPV 
(EUR)  

Hybrid NPV 
(EUR) 

Plug-in Hybrid 
NPV (EUR) 

0.05 6,973,247.93 10,947,176.53 8,636,684.66 9,468,403.02 
0.07 6,069,731.95 9,585,879.13 7,544,434.23 8,281,785.38 
0.1 4,900,884.85 7,824,816.17 6,131,427.96 6,746,699.52 

0.12 4,226,277.12 6,808,407.19 5,315,902.18 5,860,714.70 
0.15 3,344,059.91 5,479,199.93 4,249,399.59 4,702,069.43 

 

Several charging scenarios were considered: fast charging at a public charging station, 

slow and fast charging at the depot, and charging using electricity supplied by photovoltaic 

panels during the day. The optimal option is the latter, followed by slow overnight charging at 

the depot. 

 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

139 

 

Figure 6. Sensitivity analysis NPV vs. charging scenarios 

 

The consideration of various charging scenarios reveals that strategically optimized 

charging practices can significantly influence the economic benefits of electric vehicle fleets. 

Utilizing on-site photovoltaic power during the day and implementing slow overnight charging 

at the depot appear to be economically advantageous strategies. Furthermore, concepts like 

opportunity charging and load management for large fleets are crucial for minimizing electricity 

costs and network connection fees. 

 

 

5. CONCLUSIONS 

 

The process of preparing a cost-benefit analysis for fleet electrification requires a 

systematic identification and classification of associated costs. These costs can be broadly 

categorized into investment costs (vehicle purchase, regulatory fees, battery replacement, 

charging infrastructure) and maintenance and operational costs (general repair, scheduled 

maintenance, unscheduled repairs, tires, electricity consumption, insurance, charging 

infrastructure utilization, driver salaries, fleet management). For a thorough economic 

evaluation, a detailed comprehension of these individual cost elements and the variables that 

affect them is indispensable. 

Cost-benefit analyses for fleet electrification need to consider various factors. These 

include the type of electric vehicle (HEV, PHEV, BEV, V2G), the specific costs associated 

with investment, maintenance, and operation (including charging infrastructure and battery 

replacement), and the potential for additional revenue generation through V2G. The V2G 

technology offers an opportunity to enhance the cost-benefit profile of electric vehicle fleets. 

By enabling vehicles to feed energy back into the grid during periods of high demand and 

elevated electricity prices, V2G can generate revenue streams that offset charging costs and 
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potentially yield profits. This capability could contribute to higher NPV) by creating additional 

cash flows from grid electricity sales. This study did not incorporate this technology into the 

simulation model because it is not yet common in Romanian companies of this type. 

The need for en-route charging can increase labor costs and reduce productivity, 

especially for long-haul deliveries. However, opportunity charging during idle periods can offer 

benefits by integrating renewable energy, mitigating peak demand, and reducing costs. Also, 

low-capacity charging can be more cost-effective than relying solely on high-capacity fast 

charging. Smaller fleets can more easily align charging with existing depot electricity 

consumption, while larger fleets require sophisticated load management solutions to optimize 

electricity use and avoid peak demand charges. Strategic depot placement can also help reduce 

network connection costs. 

The sensitivity analyses conducted on electricity prices, annual revenue, and the 

discount rate demonstrate the significant impact of these economic parameters on the NPV of 

an electric vehicle fleet adoption. Notably, BEVs are most sensitive to electricity price 

fluctuations, while NPV across all vehicle types is inversely related to the discount rate. 

Furthermore, a positive correlation between annual revenue and NPV highlights the importance 

of operational efficiency and revenue generation in the financial viability of fleet electrification. 
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Fig. 1. Magnetic flux density at 1 m above the ground 
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