
Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

277

MOVEMENT IN VIRTUAL REALITY

Paul TĂMAȘ, Andreea POP

Technical University of Cluj-Napoca, Department of Electrical, Electronic and Computer

Engineering,

paultamas32@gmail.com, andreeapop05@yahoo.com

Keywords: Software implementation, Virtual Reality, Application programming interfaces

Abstract: In this paper we talk about the user's movement in virtual reality. The

programmable part of the application is made in the C ++ programming language, and as

the engine for running the graphic image we used Unreal Engine developed by Epic

Games. Fragments of code appear in the paper for the calculation and positioning of the

user in space, on a two-dimensional plane. The work also contains instructions to be able

to make the settings so that the application can be controlled by the glasses levers. The

whole project is developed for HTC VIVE PRO virtual reality smart glasses.

1. INTRODUCTION

 The technology that facilitates the operation of complex systems, consuming

information and turning it into knowledge (that most valuable of human resources), is the

realm of virtual reality. This special issue of IEEE Computer Graphics and Applications

brings together articles describing virtual reality technology and applications being pursued

worldwide. We felt the time was right for a peer-reviewed special issue because the field has

produced an enormous amount of hype. This can damage credibility and obscure the real

industry achievements and the extraordinarily important work being done.

Although the terms cyberspace and virtual reality have been around for years, virtual

reality as an industry is in its infancy. (Evans and Sutherland demonstrated the first head-

mounted stereo display in 1965). The term “virtual reality” is credited to Jaron Lanier, founder

of VPL Research: earlier experimenters, like Myron Krueger in the mid-l970s, used phrases

like *‘artificial reality.” William Gibson coined “cyberspace” in his 1984 science fiction

Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

278

novel, Neuromancer. Few technologies in recent years have evoked such fiery discussions in

the technical community, and fewer still have sparked such passionate involvement of the

humanities and the cultural sector. Maybe the humanities community reacts because the VR

interaction is so tightly coupled to the human senses. Perhaps the cultural sector clamors for

a role in the evolution of VR because the technology is finally interfacing with the human,

rather than the human interfacing with the technology. Whatever the reasons, VR is more a

convergence of previously disparate disciplines than a whole new branch of technology. It

simply takes a fresh look at human interaction. Evolving from user interface design, flight

and visual simulation, and telepresence technologies, VR is unique in its emphasis on the

experience of the human participant. VR focuses the user’s attention on the experience while

suspending disbelief about the method of creating it. We feel that neither the devices used nor

the level of interactiveness or fidelity determine whether a system is “VR.” The quality of the

experience is crucial. To stimulate creativity and productivity, the virtual experience must be

credible. The “reality” must both react to the human participants in physically and

perceptually appropriate ways, and conform to their personal cognitive representations of the

microworld in which they are engrossed. The experience does not necessarily have to be

realistic-just consistent. Articles by Stephen Ellis and by John Latta and David Oberg consider

the frequently forgotten human side of VR systems.

Virtual reality today bears a striking resemblance to the early stages of computer

graphics in the mid-1960s to the early 1970s. The products seem to be “a solution in search

of a problem.” As with early computer graphics products, the entry-level costs are relatively

prohibitive. A complete VR environment, including workstations, goggles, body suits, and

software, is in the range of $50,000 to $100.000. In an attempt to suggest low-cost methods,

a new magazine called PCVR: Virtual Reality and the IBM Personal Compiiter (Gradecki

Publishing, Laramie, Wyoming) publishes articles such as how to build a head-mounted

display for under $500. The serious limitations of the technology give rise to a number of

apologists. At one VR meeting in 1992, the general attitude was, “Although the pictures aren’t

very good, we really don’t need great pictures to achieve our objectives. They don’t have to

be in real time, and they don’t need to be terribly realistic.’’ We see a strong analog to the

early days of computer graphics, when all that was affordable was a fairly static,

monochrome, storage tube display. The early rationalization was that we didn’t need color or

dynamics. Time has shown that once the technology became affordable, color and realism

were much preferred. We believe the VR community will reach the same conclusion as the

technology progresses. Much research into the various elements of VR technology remains

to be done, for example, control and navigation metaphors for HMD point-of-view

applications. We need to find a comfortable way for a user to move a POV while attempting

to interact with objects and simultaneously control and gather information. Mark Bolas’

article discusses these issues. To accommodate both “immersive/inclusive” experiences and

multiple serial users, Bolas suggests the headcoupled boom-supported stereoscopic display.

Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

279

Many application areas require this type of capability to integrate a VR system into the work

environment. As the price comes down, these systems will surely see success in many fields.

2. CREATING MOTION CONTROLS

In order to be able to create the movement of the character through the camera, it is

first necessary to take over the characteristics of the camera and to make the connection

between the C ++ code and the Blueprint in which the character was created.

The camera features are taken over by the following UCameraComponent command

(this command takes over the camera components), because it does not need to be visible in

the entire application source, it will be private. The syntax for declaring this feature of the

application is as follows:

private:

UPROPERTY(VisibleAnywhere) Classic

UCameraComponent* The room;

That *Camera creates a reference of the application components. The reference will

be used in the program file, where the data processing will be done, so that the motion effect

can be created. "UPROPERTY(VisibleAnywhere) ”is the method by which the component is

assigned the visibility property throughout the program file, after inclusion. This property is

only required for the latest Unreal Engine versions (Unreal Engine versions 4.15 and later).

It must be put before each function that we implement in the header.

In the program file, we must first set the attachment, and the parent class will take the

basic components by yourself.

In order to make it possible to move the character in the application workspace, we

need to think of that plan as a two-dimensional (2D) axis system (figure 1). Suppose we want

to make a forwardbackward motion, this involves moving on one of the axes of the plane,

preferably the "Y" axis is chosen. In order to be able to perform movement, in C ++, we need

a function derived from the parent class, which takes data from the forwarding vector

(forwardVector) and transmits them to the class defined in the header. For the forward-

backward movement we can do it by incrementing or decrementing by one or more pixels

depending on the speed with which we want to move. Increment or decrement can only

be done with an integer, i.e. it cannot be done in half pixels.

„For right-to-left or reverse movement, the procedure is quite similar. It involves the

movement on one of the axes of the plane, different from the axis we chose for the front –

rear motion, preferably choose the "X" axis. In order to be able to perform motion, in C ++,

we need a function derived from the parent class, which takes data from the targeting vector

(rightVector) and transmits it to the class defined in the header. As with the previous function,

you cannot increment or decrement by half a pixel.

Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

280

Fig. 1. Example of movement plan

For the physical controllers part, we will use the levers included in the HTC VIVE PRO

virtual reality package. Setting them and setting specific buttons for movement is done by

Unreal Engine: Settings -> Project settings -> Input -> Bindings. More precisely, it can be seen

how the settings in the following set of figures are made.

Fig. 2. Lever controller setting

Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

281

To add functions (axes) we click on "+" next to "axis mappings" and a place will appear

where we can enter the name of the axis, this name must be identical to the reference we gave-

o in C ++ code. From figure 2 it can be seen that we named the axes "forward" and "right". For

the "forward" axis I set the "Y" axis of the trackpad on the left joystick, and for "right" I set the

"X" axis of the same trackpad. Since after several tests the movement was diagonal, I noticed

that for each "forward" or "right" axis, the "X" or "Y" axis, which is not used for movement,

must be set to 0.

The following set of figures exemplifies some of the code in C ++ for capturing controls

on levers.

Fig. 3. Header file

Fig. 4. Program file

3. CONCLUSION

 To develop an application that serves the field of architecture, you need a team of

Carpathian Journal of Electrical Engineering Volume 15, Number 1, 2021

282

people who can create textures and objects, to be able to assemble them in order to come up

with a useful application.

What we did in the app is the motion control part, the adjustment part collisions,

introduction and modification of existing objects and the part of the user's interaction with

objects in the application by inserting virtual hands using the controller.

REFERENCES

[1] M. A. Gigante, Virtual reality: definitions, history and applications, Virtual reality systems.

Academic Press, pp. 3-14, 1993.

[2] J. M. D. Delgado et al, A research agenda for augmented and virtual reality in architecture,

engineering and construction, Advanced Engineering Informatics, vol. 45, 101122, 2020.

[3] G. Schmitt, et al, Toward virtual reality in architecture: concepts and scenarios from the

architectural space laboratory, Presence: Teleoperators & Virtual Environments, vol. 4, no. 3,

pp. 267-285,1995.

[4] G. Reitmayr and D. Schmalstieg, An open software architecture for virtual reality interaction,

Proceedings of the ACM symposium on Virtual reality software and technology, 2001.

[5] F. Agnello, F. Avella and S. Agnello, Virtual reality for historical architecture, International

Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. XLII-

2/W9, 2019.

[6] M. Paranandi and T. Sarawgi, Virtual reality on architecture: enabling possibilities, 2002.

[7] A. Sanders, An introduction to unreal engine 4, CRC Press, 2016.

[8] J. Haas, A history of the unity game engine, Diss. Worcester Polytechnic Institute, 2014.

Authors' statement

This article was produced under the project Project RoUa 2SOFT/1.2/86 Ro-Ua Cross-border

Academic Development for Research and Innovation”.

