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Abstract: This research work presents a novel individual and Hybrid MGA and IGWO was 

utilized to develop FACTS-controlled optimization model for improvement of bus voltage 

profiles. The algorithm simultaneously solved the objective problem and augments device 

parameters as it searches for the best FACTS location and sizes. Objective function was 

resolved Security Constrained Optimal Load Flow (SCOLF) with the integration FACTS 

power electronics controllers for TTC without violating active and reactive power generation 

confines, voltage boundaries, line flow limits, and FACTS devices operation restrictions and 

ratings. TCSC controller parameters have been effectively optimized for the research and the 

work has been successfully carried out on MATLAB platform using IEEE 30-bus test bus 

systems. Power system procedures and parameters can be augmented using artificial 

intelligence techniques like ANN, ANFIS, Fuzzy Logic, DEPSO and MGA together with 

power electronics built versatile and highly adaptable Flexible AC Transmission Systems 

controllers. FACTS normalize voltage or control the power that is either added into or 

absorbed from the system. They enhance the overall grid capacity and performance. They 

also increase the dependability and efficiency of power systems. Apart from alleviating power 

transients, FACTS provide greater system real and reactive control.  

 

 

 

1. INTRODUCTION 

 

Currently, electrical energy utilities run on constraints of complex interconnectivity and 

operation limits therefore forcing them to operate within their existing infrastructure at a higher 

effectiveness. There is an ever growing interest in better operation and usage of the prevailing 

electricity infrastructure to enable the effective control of load flow, advance network 

dynamics, and upsurge system dependability by use of these devices. In addition, the devices 
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can also play a pivotal role in augmentation of power grid transmission capability [1]. Extensive 

variety of algorithms have been advanced for computing TTC, increasing voltage profiles, 

optimizing via minimization the generation costs and loss lessening. Optimization of network 

parameters can be executed by methods including but not limited to SQP, DEA, DEPSO, MGA, 

BGA, ABCA, PSO and transfer based TSCOPF techniques. These ways necessitate the 

formulation of an objective function for the to get the optimal solution. [2]. Under constantly 

increased electricity demands, it is becoming more critical to boost the system capability such 

that more power transfers, maintenance of voltage stability margins and losses are minimized 

with less network expansion investment. In the place of building new supply substations or 

lines, proper installation and optimization, with Artificial Intelligence (AI), of transmission as 

well as generation units can make power networks billet more from source end to load [3]. With 

application of these optimized devices, the electrical energy can be transmitted over the selected 

paths with considerable increase in transmission line capability and additionally enhancement 

for the security of interconnected power network. UPFC, for example, is very adaptable and 

versatile amongst the FACTS controllers [4]. Augmentation of total transfer capability, 

optimization via minimization of power losses and enhancement of voltage profiles in strained 

and overloaded transmission network guarantees that the system is steady and effectual even 

under stressed circumstances. AI methods can be suitably applied to determine the optimum 

ratings and values of these devices for simultaneous resolution of diverse power grid problems.  

 

 

2. CONTEXT 

 

Placement of FACTS is achievable and optimization is critical in realization of the 

device ultimate capability. In early days, stabilization of electrical grids was realized via 

equipment like PSS, AVRs and approaches like breaking resistor, discounting of system 

transmission reactance, use of grouped or bundled conductors, SCC limiters and the most lately 

placement of FACTS devices. These devices have the capability to alter the three main control 

parameters, i.e. the bus voltage, reactance of the transmission line, and phase angle between 

two buses, either concurrently or autonomously. They achieve this via the regulatory control of 

the in-phase voltage, voltage of the quadrature axis and parallel compensation to better voltage 

stability, power transmission and shrink system losses of the composite interconnected power 

grid. To harness the several benefits of these devices, AI techniques can be used to augment the 

parameters. This way, FACTS devices optimization models for objective functions of more 

than parameter. This is critical since the devices are very expensive and comparative analysis 

is required for commercial reasons [4]. Heuristic search methods have been found to be robust 

and efficient to solve such complex problems and give fairly optimal results. The IGWO 

augmentation algorithm applied in this work, is susceptible to premature fall into the local 

optimum and its convergence speeds are quite low. Consequently, so as to increase the global 
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convergence and equivalent speed, this research has utilized MGA to mitigate this 

phenomenon. IGWO's searching ability is based on two principles: survey and exploitation. 

Survey refers to the process of exploring new areas or mathematically, the process of looking 

for a solution as much as possible in a search space to prevent local optimum stagnation. On 

the other hand, exploitation refers to looking in the same direction in greater depth or 

mathematically, searching for a solution with high precision. Using the IGWO algorithm to find 

the global optimum with high efficiency necessitates achieving the proper balance between 

exploration and exploitation. As compared to other swarm intelligent techniques, IGWO 

algorithms perform well in finding the global optimum for the high-dimensional problem, but 

not so well in finding the global optimum for low-dimensional problems. Usually, there is no 

guarantee that IGWO will identify global minima, it is conceivable that it will stick with local 

minima and calculate corresponding angles that do not eliminate the third harmonic. To mitigate 

this issue, a donor vector from MGA technique is used, which adds randomness to the IGWO 

technique and allows it to escape out of the local optimum and look in a new direction for the 

global optimum. Since the MGA technique is based on accomplish random initialization, it 

outdoes finding the global optima, but it has a limitation in that it lacks a parameter that is 

directly related to algorithm convergence, so the speed of convergence is very slow and 

provides power oscillation around the global optima. As a result, the flaw in one approach is 

offset by another method. Therefore, a new algorithm called improved gray wolf optimization 

and Modified Genetic Algorithm (IGWO-MGA) is proposed in this thesis, which combines the 

IGWO algorithm with a better convergence factor and the MGA algorithm with a dynamic 

scaling factor with the help of a MGA crossover operator [5][7][11]. 

 

 

3. PREVIOUS RESULTS 

 

From the previous literature studies, optimum placement various FACTS devices have 

been research with mainly singular heuristic methods. To realize the peak performances of these 

devices; the best location, hybrid AI methods need to be introduced and their performances 

assessed with single ones. The assessment has also deduced that the devices have been utilized 

jointly and separately to offer voltage over active and real power control and regulation via the 

voltage injection and absorption properties they possess. The controllers have used to enhance 

one or two parameters like voltage stability, loss reduction or transient stability and other 

system parameters. This research has gone a step further. It will further delve into the 

development of hybrid GA-IGWO FACTS-controlled model for optimization of total capability 

transfer and observation of voltage profile enhancement and loss reduction. The unique FACTS 

controlled AI optimization model for TTC enhancement crucial for comparative analysis, 

system performance and economic reasons. Performances of single AI models also need be 

compared with the hybrid ones for both optimization of the system parameter as well FACTS 
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devices allocation. Hybrid evolutionary heuristics with different strengths are also presented in 

this work. This work will create a basis of evaluating their optimization capabilities with other 

techniques in the foreseeable future. 

 

 

4. METHOD USED 

 

4.1. Problem formulation 

 

The problem will be formulated to form the maximization the viable TTC while making 

observation on voltage profiles and system loss reduction. The optimization problem can be 

augmented instantaneously subject to the numerous equality and inequality limitations. The 

objectives maximizing TTC and observation of profiles of bus voltages and power loss 

lessening characteristics. The formulation covered the TTC base case (without FACTS 

controllers), TTC with UPFC and TTC with TCSC. TTC is the utmost power transfer without 

any line thermal overload, within violation of voltage bounds voltage unsteadiness or transient 

probations. It’s the central constituent of the ATC. Its dependent on system base case operating 

conditions, system operating limits, configuration of the system network, network 

contingencies among other constraints. TTC can be accomplished using Repeated Power Flow, 

Continuation Load Flow and Security Constrained Load Flow. The Security Constrained Power 

Flow has been utilized for this study [5]-[12]. 

 

4.2. Base case CPF (without FACTS controllers) 

 

To find TTC, the objective is to optimize through maximization strategy the power 

transfer between two areas while operating within thermal, voltage and stability confines. A 

typical TTC problem formulation is presented as illustrated in the following equation:  

  

 𝑃𝑟 = ∑ 𝑃𝐷𝑖
𝑀𝐵𝑆𝑁𝐾
𝑘=1  (1) 

 

The above is subject to: - 

 𝑃𝐺𝑖 − 𝑃𝐷𝑖 + 𝑉𝑖𝑉𝑗𝑉𝑖𝑗 𝑐𝑜𝑠(𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗) = 0 (2) 

 

 𝑄𝐺𝑖 − 𝑄𝐷𝑖 + 𝑉𝑖𝑉𝑗𝑌𝑖𝑗 𝑠𝑖𝑛(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (3) 

 

 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  (4) 

 

 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 (5) 
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 𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗.𝑚𝑎𝑥 (6) 

 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (7) 

 

where: MBSNK is the number of load buses in the receive end and PDi is the real load at bus i.  

The other equations are the power flow restraints and the following equations denote 

active and reactive power generation bounds, the second last equation stands for the thermal 

limitations and the last equation denotes the voltage level constraint. 

 

4.3. CPF with TCSC FACTS Controller 

 

The modified TTC function with TCSC FACTS controller, Pr for maximizing the TTC 

[44] of power transactions between source and sink areas in power system is given as: 

 

 𝑃𝑟 = ∑ 𝑃𝐷𝑖
𝑀𝐵
𝑘=1  (8) 

 

The equality constraints with TCSC controller are formulated as follows:  

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 + ∑ 𝑃𝑃𝑖
𝑚
𝑘=1 (𝛼𝑃𝑘) + 𝑉𝑗𝑌𝑖𝑗(𝑋𝑆) 𝑐𝑜𝑠(𝜃𝑖𝑗 (𝑋𝑠) − 𝛿𝑗 + 𝛿𝑗) = 0                                        (9) 

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 + ∑ 𝑃𝑃𝑖
𝑚
𝑘=1 (𝛼𝑃𝑘) + 𝑉𝑗𝑌𝑖𝑗(𝑋𝑆) 𝑠𝑖𝑛(𝜃𝑖𝑗 (𝑋𝑠) − 𝛿𝑗 + 𝛿𝑗) = 0                                       (10) 

 

Given that:  

 

 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥 (11) 

 

 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 (12) 

 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (13) 

 

 𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 (14) 

 

 0 ≤ 𝑋𝑠𝑖 ≤ 𝑋𝑠𝑖
𝑚𝑎𝑥  (15) 

 

 𝛼𝑃𝑖
𝑚𝑖𝑛 ≤ 𝛼𝑃𝑖 ≤ 𝛼𝑃𝑖

𝑚𝑎𝑥 (16) 

 

 0 ≤ 𝑉𝑈𝑖 ≤ 𝑉𝑈𝑖
𝑚𝑎𝑥 (17) 
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 −𝜋 ≤ 𝛼𝑈𝑖 ≤ 𝜋 (18) 

 

 𝑄𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑣𝑖 ≤ 𝑄𝑣𝑖

𝑚𝑎𝑥 (19) 

where:  

PGi and QGi are active and reactive power generation at bus i 

PDi and QDi are active and reactive loads at bus i 

PPi(αPk) and QPi(αPk) are the injected real and reactive power of TCSC at bus i 

Vi and Vj are voltage magnitude at buses i and j 

Yij(Xs) and θij(Xs) are the magnitude and angle the ijth component in admittance matrix with 

TCSC  

δi and δj are the bus i and j voltage angles 

𝑃𝐺𝑖
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑃𝐺𝑖

𝑚𝑎𝑥 are minimum and maximum bounds of real power generated at bus i 

𝑉𝑖
𝑚𝑖𝑛𝑎𝑛𝑑 𝑉𝑖

𝑚𝑎𝑥 are minimum and maximum bounds of real voltage valueat bus i 

𝑇𝑖
𝑚𝑖𝑛𝑎𝑛𝑑 𝑇𝑖

𝑚𝑎𝑥 are the minimum and maximum range of tap changing transformer  

𝑋𝑆 is the vector reactance of TCSC 

M is the sum of all buses 

MG is the quantity of generator units  

ML is the sum of all branches, and  

MBSNK is the total quantity r of load buses in sink/receive end area. 

 

4.4. Proposed Optimization Techniques 

 

i. Modified Genetic Algorithm 

MGA is a stochastically biologically inspired technique presented by Storm and Price 

in 1997. MGA belongs to the family of genetic algorithms (GA). MGA performs just like a GA 

and it has the following operation: initialization, mutation, crossover, and selection. In MGA, 

characters are abridged chromosomes which programs the control parameters of the problem. 

Strengths of an individual characters gives the objective function commonly denoted as fitness 

that must be augmented in the optimization process. An arbitrary function has the chance yield 

the primary population size. Soon after the commencement, successive populaces are produced 

using the MGA process of iteration. This incorporates three rudimentary functional operations: 

-reproduction, crossover and mutation procedures. Finally, the population steadies since no 

healthier individual can be created. As the algorithm converges, and majority of the individual 

characters in the population are nearly undistinguishable hence denotes a sub-optimal results. 

The outcomes are critical in the determination of the optimization characteristics of the 

augmentation procedure. For application of MGA in resolution of additional and particular 

problem, one has to outline the solution illustration and the coding of control parameters. The 
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augmentation problem in question is solved by use of Security Constrained Power Flow 

(SCOPF) to find the Total Transfer Capability for specified MGA-tuned FACTS devices to 

define optimal positions and compensation dimensions [13]. The basic operation of MGA is 

stated as follows: - 

a) Initialization operation   

The procedure for initialization will choose the primary population while operating 

within the span of the control parameters with an arbitral number creator. Users can hypothesize 

the quantity of population in this process. 

b) Selection operation  

This is a key reproduction procedure where individual chromosomes are derived as per 

their respective objective function/fitness. This is a simulated procedure that imitates the 

version of the Darwinian natural selection phenomenon. Initially, the reproduction process 

begins with selection of chromosomes for pairing. The roulette wheel selection is best suited in 

this for application at this instance. It is observed that stochastic common samples exhibit 

superior convergence characteristics.  

c) Crossover operation  

It’s one of the crucial physiognomies of MGA augmentation tenets dissimilar from other 

optimization algorithms. The operation focal objective is to reconstitute blocks on varied 

individuals to create a new block of generations as shown in the equations below:  

 

 𝑥1 = 𝜇1𝑥 +  𝜇2 𝑦 (20) 

 

 𝑦1 = 𝜇1𝑦 + 𝜇2𝑥 (21) 

 

 𝜇1 + 𝜇2 = 1, 𝜇1𝜇2 > 0 (22) 

 

where x, y denotes two parents, x’, y’ defines two descendants. µ1 is gotten by an unchanging 

random number generator sandwiched between the range (0~l). 

d) Mutation operation   

This is vital in presentation of artificial divergence in the populace to shun untimely 

convergence to local optima. A computation operation demonstrated positive result in a 

numerous study is dynamic or non-even mutation is formulated for fine-tuning intended at 

attaining a highest degree of precision. For instance, provided with parent x, if gene xk is 

designated for mutation operation, the resulting gene is chosen with equivalent likelihood from 

the two selections: 

 𝑥𝑘
1 = 𝑥𝑘 + 𝑟(𝑏𝑘 − 𝑥𝑘) (1 −

𝑡

𝑇
)b (23) 

 

 𝑥𝑘
1 = 𝑥𝑘 − 𝑟(𝑥𝑘 − 𝑎𝑘)(1 −

𝑡

𝑇
)b (24) 
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r denotes uniform random number selected between the span of (0,1), t is the prevailing 

generation number, T is the highest number of generations and b is a variable responsible for 

the degree of absence of constancy. The extent of mutation lessens as the number of generations 

upsurges. 

e) Replacement of population  

There are two population substitution approaches, non-overlapping generations and 

steady-state substitution. When utilizing non-overlapping generations, a generation was 

completely swapped by its progeny made via selection, crossover and mutation operation. It is 

conceivable for the offspring to be inferior than their parentages. Some of the fitter 

chromosomes may be vanished from the evolutionary process at this stage. The steady-state 

replacement or constant substitution is applied to go over and circumvent this problem. In this 

course, a number of offspring are created and these replace the same number of the least fit 

individuals in the population hence providing better convergence. [14] –[19] 

 

ii. Improved Grey Wolf Optimization (IGWO) Algorithm  

IGWO a newfangled swarm intelligence algorithm grounded on the firmly orderly 

scheme and hunting conduct of grey wolves, which comprises three parts: tracking prey, 

surrounding prey, attacking prey, and other optimization processes. It’s abridged as shown in 

the diagram below:   

Figure 1: Grey wolf pack ranking 

 

Wolf ranking Hierarchy  

These wolves largely animate in clusters, and they follow a social pecking order, as 

shown in figure 1, displayed above. It can be realized from the figure that the α Wolf is the 

trailblazer of the social group and is mostly in authority for making choices and deciding about 

actions such as predation as the other wolves submit to the command of the α Wolf. Level 2: β 

Wolf, submitting and supplementary to the α Wolf, controls all the wolves excluding the α 

Wolf. Level 3: δ Wolf, submitting the authority of α and β Wolf at the same time, can rule the 

residual wolf pack. The ω wolves rank is the lowermost class in the pecking order. The universal 

predation conduct of grey wolves is controlled by α wolves, and the duty of other wolves is to 

confine the prey. 

Surrounding prey 



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

60 

Grey wolves confine their prey as they hunt, hence stifling their movement. The 

computational model of enclosing the prey is outlined as follows: - 

 

 D = | C. Xp (t) - X (t) | (25) 

 

where X(t) denotes the location of grey wolves, and Xp signifies the point vector of prey: 

 

 X (t +1) =Xp - A·D (26) 

 

 where A and C symbolize constant vectors, and the computational formula is shown below: 

 

 A = 2a·(r1-1) (27) 

 

 C=2r·t (28) 

 

where t denotes the existing sum of all iterations, and a = 2 (1-t/Tmax) denotes that the varying 

parameter decreases in a linear manner from 2 to 0, r1, r2 ∈ [0,1] throughout the iteration course. 

 

Hunting prey 

These wolves also recognize prey and edge it. The hunt procedure is α Wolf commands 

and leads, β and δ sometimes, they will participate in hunting as well. Hypothesis α, β and δ. 

The wolf can have a profound comprehension of the probable site of prey, and consequently, 

during the algorithm process of iteration, keep the finest location of the three wolves in the 

existing population, and mark them as α, β and δ. Thereafter, in accordance with the position 

of the three parameters ϖ Wolf individuals are rationalized and updated. The computational 

model is thus advanced and established.  

 

iii. Hybrid MGA and IGWO Algorithm  

IGWO augmentation technique has been efficaciously applied in the areas of job 

planning, power system analysis, control and protection simulation, economic forecasting, 

among others. Yet, similar to other approaches, the algorithm is predisposed to falling 

prematurely into the local optimum and possess convergence speed of very low magnitudes. 

Hence, in order to increase the global convergence levels and better the convergence speeds, 

this research work has utilized MGA to mitigate this inadequacy. GWO's searching ability is 

based on two principles: exploration and exploitation. Exploration refers to the process of 

exploring new areas or mathematically, the process of looking for a solution as much as possible 

in a search space to prevent local optimum stagnation. On the other hand, exploitation refers to 

looking in the same direction in greater depth or mathematically, searching for a solution with 

high precision. Using the GWO algorithm to find the global optimum with high efficiency 
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necessitates achieving the proper balance between exploration and exploitation. As compared 

to other swarm intelligent techniques, GWO algorithms perform well in finding the global 

optimum for the high-dimensional problem, but not so well in finding the global optimum for 

low-dimensional problems. Normal there is no guarantee that GWO will identify global 

minima, it is conceivable that it will stick with local minima and calculate corresponding angles 

that do not eliminate the third harmonic. To mitigate this issue, a donor vector from a MGA 

like the differential evolution technique is used, which adds randomness to the GWO technique 

and allows it to escape out of the local optimum and look in a new direction for the global 

optimum. Since the DE technique is based on accomplish random initialization, it outdoes 

finding the global optima, but it has a limitation in that it lacks a parameter that is directly 

related to algorithm convergence, so the speed of convergence is very slow and provides power 

oscillation around the global optima. As a result, the flaw in one approach is offset by another 

method. Therefore, a new algorithm called improved gray wolf optimization and differential 

evolution (IGWO-MGA) is proposed in this thesis, which combines the IGWO algorithm with 

a better convergence factor and the DE algorithm with a dynamic scaling factor with the help 

of a DE crossover operator. The initialization of a arbitrary vector of population size “Np” with 

dimension “d” under boundary conditions is the first step in the IGWO-MGA method. Where 

‘d’ denotes the problem dimension or the number of variables in the problem, and this random 

vector is referred to as the target vector, which can be described as shown below: 

 

 |𝑋𝑖
𝑡|=(𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , 𝑥𝑖,3

𝑡 … … … 𝑥𝑖,𝑑
𝑡 )  (29) 

 

where 𝑖 ∈ {1,2, 3…Np}, and 𝑡 is the current value of iteration and each individual can be 

calculated as follows: 

 

 𝑥𝑖,𝑗 = 𝑥𝑙,𝑏+ rand (0,1)*(𝑥𝑢𝑏 − 𝑥𝑙𝑏) (30) 

 

where 𝑥ub, 𝑥lb are the upper bound and lower bound vectors with d individuals respectively. The 

same way as in IGWO, the three best results in IGWO-MGA are kept as alpha (𝑋→𝛼), beta 

(𝑋→𝛽), and delta (𝑋→𝛿) solutions from the target vector. Succeeding the saving of the results, 

the target vector is exposed to a mutation in a manner resembling the MGA technique. In the 

proposed algorithm, donor vector 𝑉→𝑖𝑡 is created from the target vector 𝑋→𝑖𝑡 using a 

DE/best/1 mutation approach with a dynamic scaling factor 𝐹′, which offers more arbitrariness 

in the initial stages, preventing the algorithm from dropping into a local optimum, while the 

value of 𝐹′ decreases in the final stages, boosting the algorithm's convergence speed. So, the 

donor vector can be stated as follows:  

 

 |𝑉𝑖
𝑡| = |𝑋𝑎𝑙𝑝ℎ𝑎

𝑡 | + 𝐹′ ∗ (|𝑋𝑅1| − |𝑋𝑅2|) (31) 
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where 𝑋alpha, 𝑡 is the α solution or best solution as far and 𝑋𝑅1, 𝑋𝑅2 are the randomly selected 

solution from the target vector and F’ can be expressed as follows: 

 

 𝐹′ =
2

1+𝑒
(𝑘∗(

𝑡
𝑡𝑚𝑎𝑥

)
 (32) 

 

IGWO's searching ability is primarily determined by the vectors A and 𝐶, where 𝐶 is a 

randomly generated vector ranging from 0 to 2, the wolves favor exploration if 𝐶→ > 1 and 

exploitation if 𝐶 < 1, and 𝐶 plays no role in IGWO's convergence speed. Now, the only vector 

that is important in convergence is 𝐴, but the value of 𝐴 is determined by the convergence factor 

or 𝑎, and the value of 𝑎 decreases linearly from 2 to 0 over the course of iteration. We need to 

adjust the convergence factor to enhance the speed of the algorithm as shown in the equation 

below:  

 𝐹′ =
2

1𝑒
(𝑘∗(

𝑡
𝑡𝑚𝑎𝑥

−
1
2

)
  (33) 

 

Using this better convergence factor, the improved placement of the wolves can be 

calculated on the foundation of the position of the greatest wolves. Let us consider the ith 

position vector of wolves in the tth iteration as 𝑊𝑖
𝑡 = [𝑤𝑖,2

𝑡 , 𝑤𝑖,2
𝑡 … 𝑤𝑖,𝑑

𝑡 ]  which can be calculated 

using equation. The two vectors are combined using a binomial crossover operator to generate 

a position vector for the next iteration. The new location vector can be defined as follows [20-

24]: 

 𝑋𝑖,𝑗
𝑡+1 = {

𝑉𝑖,𝑗
𝑡  𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑂𝑅 𝑗 = 𝛿

𝑋𝑖,𝑗
𝑡  𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑅 𝐴𝑁𝐷 𝑗 ≠ 𝛿

 (34) 

 

4.5. Research procedure 

 

The objectives of this will be realized as follows: 

1. An objective function based (base case, without FACTS) for maximization total transfer 

capability as the optimization problem will be formulated and solution derived 

2. Singular Modified Genetic Algorithm and Improved Grey Wolf Optimization to solve the 

objective function, separately, via optimal location and sizing of FACTS devices will be 

developed  

3. Hybrid Genetic Algorithm and Improved Grey Wolf Optimizer Algorithm will be 

developed and used to solve the function for maximizing power transfer capability while 

observing the voltage profiles and loos reduction  

4. Hybrid Improved Grey Wolf Optimizer Algorithm and Genetic Algorithm with FACTS 

model above will be utilized to carry out simulations and evaluate effectiveness of model 

on improvement of power transfer capability  
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5. The results will be assessed and effects of individual FACTS devices compared to each 

other for the four system parameters under consideration. 

6. The proposed test networks will be the standard IEEE 30 bus test system 

7.  Simulation will be carried out in MATLAB 

 

 

5. RESULTS AND DISCUSSION 

 

5.1. Results from the optimal power flow (Base case, without optimized FACTS) 

 

5.1.1. Voltage profile curve (Base case, without optimized FACTS) 

Figure 2 below shows the voltage profile curve for the base case (Base case, without 

optimized FACTS). The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value 

is observed at bus 30 (0.995 p.u.).  

 

 

Figure 2: Voltage profile curve (Base case, without optimized FACTS 

 

5.2. OPF with GA-tuned UPFC 

 

5.2.1. Optimization results  

The optimized values for GA-tuned UPFC are indicated in the table below:  
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Table 1. Optimization results 

Parameter      Values  

Voltage UPFC (PU)          1.01     and    1.03 

Angle UPFC (R)                 -0.01   and      0.54 

Location UPFC (Bus)           Bus 1 and Bus 8 

 

5.2.2. Voltage profile curve with GA-tuned UPFC  

Figure 3 below shows the voltage profile curve for the with GA-optimized UPFC 

FACTS). The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is 

observed at bus 30 (0.995 p.u.). There is no significant variation of the voltage profiles with 

application of GA-tuned UPFC FACTS controller as compared to the base case scenario.  

 

Figure 3: Voltage profile curve with GA-tuned UPFC 

 

5.3. OPF with GA-tuned TCSC 

 

5.3.1. Optimization Results     

 The optimized values for MGA-tuned TCSC are indicated in the table below:  

 

Table 2. Optimization Results 

 

 

 

 

 

  

Parameter   Values  

Reactance TCSC (p.u.)    0 and 0.02 

Location TCSC (Line)   40 and 4 
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5.3.2. Voltage profile curve with GA-tuned TCSC 

Figure 4 below shows the voltage profile curve for the with MGA-optimized TCSC 

FACTS controller. The maximum p.u. value is observed at bus 12 (1.081p.u.) and lowest value 

is observed at bus 30 (0.997 p.u.). There is no significant variation of the voltage profiles with 

application of GA-tuned UPFC FACTS controller as compared to the base case scenario. 

 

Figure 4: Voltage profile curve for the with GA-optimized TCSC FACTS Device 

 

5.4. OPF with IGWO-tuned UPFC 

 

5.4.1. Optimization results  

Table 3 below shows the optimization results for IGWO-tuned UPFC: 

 

Table 3: Optimization results 

Parameter  Values  

Voltage UPFC () 1.04           1.05 

Angle UPFC (R) -1.08         -0.71 

Location UPFC (Bus) Bus 1 and Bus 8  

 

5.4.2. Voltage profile curve with IGWO-tuned UPFC 

Figure 5 below shows the voltage profile curve for the IGWO-optimized UPFC FACTS 

controller. The maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest value is 

observed at bus 5 (1.03 p.u.). There is significant variation of the voltage profiles with 
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application of IGWO-tuned UPFC FACTS controller as compared to the base case scenario and 

GA-tuned UPFC and GA-tuned TCSC FACTS controllers.  

 

 

Figure 5: Voltage profile curve with IGWO-tuned UPFC 

 

5.5. OPF with IGWO-tuned TCSC 

 

5.5.1. Optimization results  

Table 4 shows the optimization results for IGWO-tuned TCSC  

 

Table 4. Optimization results 

Parameter  Values  

Reactance TCSC (PU) (p.u.) 0.015    and      0.0015 

Location TCSC (Line)  Line 2     and   Line 4 

 

5.5.2. Voltage profile curve with IGWO-tuned TCSC 

Figure 6 below shows the voltage profile curve for the with IGWO-optimized TCSC 

FACTS controller. The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value 

is observed at bus 30 (0.995p.u.). There is no significant variation of the voltage profiles with 

application of IGWO-tuned TCSC FACTS controller as compared to the base case scenario and 

GA-tuned TCSC FACTS controllers but there is significant variation of the voltage profiles 

with GA-tuned UPFC case.  
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Figure 6: Voltage profile curve with IGWO-tuned TCSC 

 

5.6. OPF with Hybrid MGA and IGWO-tuned UPFC 

 

5.6.1. Optimization results 

Table 5 below shows the optimization results for Hybrid MGA and IGWO-tuned UPFC 

 

Table 5. Optimization results 

Optimization Results 

Voltage UPFC (p.u.)               1.03      and      1 

Angle UPFC ®   -0.51     and   -0.65 

Location UPFC (Bus)      Bus 30 and Bus 1 

 

5.6.2. Voltage profile curve with Hybrid M and IGWO-tuned UPFC 

Figure 7 below shows the voltage profile curve for the with Hybrid MGA and IGWO-

optimized UPFC FACTS controller. The maximum p.u. value is observed at bus 12 (1.1302p.u.) 

and lowest value is observed at bus 5 (1.04 p.u.). There is significant variation and enhancement 

of the voltage profiles with application of Hybrid GA and IGWO-tuned UPFC FACTS 

controller as compared to the base case scenario and also as compared MGA-tuned UPFC 

MGA-tuned TCSC FACTS and IGWO-tuned UPFC controllers.  
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Figure 7: Voltage profile curve with Hybrid MGA and IGWO-tuned UPFC 

 

 

5.7. OPF with Hybrid GA and IGWO-tuned TCSC 

 

5.7.1. Optimization results 

Table 6 below shows the optimization results for Hybrid MGA and IGWO-tuned TCSC 

 

Table 6: Optimization results 

Parameter   Values  

Reactance TCSC (p.u.):                  0.02            0.02 

Location TCSC (Line):               Line 4   and Line 2 

 

5.7.2. Voltage profile curve with Hydrid MGA and IGWO-tuned TCSC 

Figure 8 below shows the voltage profile curve for the Hybrid MGA and IGWO-tuned 

TCSC FACTS controller. The maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest 

value is observed at bus 30 (0.995 p.u.). There is no significant variation and enhancement of 

the voltage profiles with application of Hybrid MGA and IGWO-tuned TCSC FACTS 

controller as compared to the base case scenario and also as compared to MGA-tuned TCSC 

FACTS and IGWO-tuned TCSC. There is however significant variation and enhancement of 

the voltage profiles with MGA-tuned UPFC. 
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Figure 8: Voltage profile curve with Hybrid GA and IGWO-tuned TCSC 

 

5.8. Bus voltage profiles for different optimization techniques  

 

 The voltage profile curve for the base case (Base case, without optimized FACTS). The 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). For the voltage profile curve for the with GA-optimized UPFC FACTS), the 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). There is no significant variation of the voltage profiles with application of GA-

tuned UPFC FACTS controller as compared to the base case scenario. For the voltage profile 

curve for the with MGA-optimized UPFC FACTS), the maximum p.u. value is observed at bus 

12 (1.082p.u.) and lowest value is observed at bus 30 (0.995 p.u.). There is no significant 

variation of the voltage profiles with application of GA-tuned UPFC FACTS controller as 

compared to the base case scenario. For the voltage profile curve for the with MGA-optimized 

TCSC FACTS controller, the maximum p.u. value is observed at bus 12 (1.081p.u.) and lowest 

value is observed at bus 30 (0.997 p.u.). There is no significant variation of the voltage profiles 

with application of MGA-tuned UPFC FACTS controller as compared to the base case scenario. 

For the voltage profile curve for the with IGWO-optimized UPFC FACTS controller, the 

maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest value is observed at bus 5 

(1.03 p.u.). There is significant variation of the voltage profiles with application of IGWO-

tuned UPFC FACTS controller as compared to the base case scenario and GA-tuned UPFC and 

GA-tuned TCSC FACTS controllers. For the voltage profile curve for the with IGWO-

optimized TCSC FACTS controller, the maximum p.u. value is observed at bus 12 (1.082p.u.) 

and lowest value is observed at bus 30 (0.995p.u.). There is no significant variation of the 

voltage profiles with application of IGWO-tuned TCSC FACTS controller as compared to the 
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base case scenario and GA-tuned TCSC FACTS controllers but there is significant variation of 

the voltage profiles with MGA-tuned UPFC case. For the voltage profile curve for the with 

IGWO-optimized UPFC FACTS controller, the maximum p.u. value is observed at bus 12 

(1.1302p.u.) and lowest value is observed at bus 5 (1.04 p.u.). There is significant variation and 

enhancements of the voltage profiles with application of Hydrid MGA and IGWO-tuned UPFC 

FACTS controller as compared to the base case scenario and also as compared MGA-tuned 

UPFC GA-tuned TCSC FACTS and IGWO-tuned UPFC controllers. For the voltage profile 

curve for the with Hydrid MGA and IGWO-tuned TCSC FACTS controller, the maximum p.u. 

value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 (0.995 p.u.). 

There is no significant variation and enhancement of the voltage profiles with application of 

Hydrid MGA and IGWO-tuned TCSC FACTS controller as compared to the base case scenario 

and also as compared to MGA-tuned TCSC FACTS and IGWO-tuned TCSC. There is however 

significant variation and enhancements of the voltage profiles with MGA-tuned UPFC.    

The figure below shows the bus voltage profiles for different optimization techniques: 

  

 

Figure 9: bus voltage profiles for different optimization techniques 

 

 

6. CONCLUSION 

 

There is no significant variation of the voltage profiles with application of GA-tuned 

UPFC FACTS controller as compared to the base case scenario. For the bus voltage profile 

curve for the GA-optimized TCSC FACTS controller, the maximum p.u. value is observed at 

bus 12 (1.081p.u.) and lowest value is observed at bus 30 (0.997 p.u.). There is no significant 
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variation of the voltage profiles with application of GA-tuned UPFC FACTS controller as 

compared to the base case scenario. For the voltage profile curve for the with IGWO-optimized 

UPFC FACTS controller, the maximum p.u. value is observed at bus 12 (1.102p.u.) and lowest 

value is observed at bus 5 (1.03 p.u.). There is significant variation of the voltage profiles with 

application of IGWO-tuned UPFC FACTS controller as compared to the base case scenario and 

GA-tuned UPFC and GA-tuned TCSC FACTS controllers. For the voltage profile curve for the 

with IGWO-optimized TCSC FACTS controller, the maximum p.u. value is observed at bus 12 

(1.082p.u.) and lowest value is observed at bus 30 (0.995p.u.). There is no significant variation 

of the voltage profiles with application of IGWO-tuned TCSC FACTS controller as compared 

to the base case scenario and GA-tuned TCSC FACTS controllers but there is significant 

variation of the voltage profiles with GA-tuned UPFC case. For the voltage profile curve for 

the with IGWO-optimized UPFC FACTS controller, the maximum p.u. value is observed at 

bus 12 (1.1302p.u.) and lowest value is observed at bus 5 (1.04 p.u.). There is significant 

variation and enhancements of the voltage profiles with application of Hydrid GA and IGWO-

tuned UPFC FACTS controller as compared to the base case scenario and also as compared 

MGA-tuned UPFC, GA-tuned TCSC FACTS and IGWO-tuned UPFC controllers. For the 

voltage profile curve for the with Hydrid GA and IGWO-tuned TCSC FACTS controller, the 

maximum p.u. value is observed at bus 12 (1.082p.u.) and lowest value is observed at bus 30 

(0.995 p.u.). There is no significant variation and enhancements of the voltage profiles with 

application of Hydrid GA and IGWO-tuned TCSC FACTS controller as compared to the base 

case scenario and also as compared to GA-tuned TCSC FACTS and IGWO-tuned TCSC. There 

is however significant variation and enhancements of the voltage profiles with GA-tuned 

UPFC. From the bus voltage profiles, Hybrid MGA and IGWO with UPFC FACTS controller 

showed the most significant improvement of bus voltages. It imperative to note that the 

techniques have brought out the inherent strengths of the FACTS controllers applied. UPFC 

FACTS controller showed strong performance in voltage profile improvement compared to 

TCSC FACTS controller. Thus, for systems with voltage profile challenges, IGWO tuned 

UPFC FACTS controller is preferred to tuned TCSC FACTS controller.  
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