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Abstract: This study proposes an enhanced Multi-Objective Grey Wolf Optimizer 

(MOGWO) using adaptive population diversity tuning and levy flight theories (EMOGWO-

ADTLF). It addresses the issues of parameter tunning by balancing exploration and 

exploitation. Using MATLAB and Python library Pymoo, the study implemented and 

evaluated the performance of EMOGWO-ADTLF using multi-objective test problems. The 

results were compared to high-performing algorithms like MOGWO, Non-Dominated 

Sorting Grey Wolf Optimizer (NSGWO), Dynamic Chaos MOGWO (DCMOGWO), Multi-

Objective Mayfly Algorithm (MMA), Multi-Objective Antlion Algorithm (MOALO) and 

Multi-Objective Dragonfly Algorithm (MODA). In this work, inverted generational 

distance (IGD) and hypervolume (HV) were the metrics used to measure the performance 

of algorithms. The metrics measure the diversity, coverage, and spread of solutions. The 

results obtained showed the potency of EMOGWO-ADTLF in approximating the Pareto 

fronts. It ranks first in overall average scores in IGD and HV, with total rank scores of 17 

and 18, respectively. 

 

 

 

1. INTRODUCTION 

 

 Multi-objective optimization has become important in solving problems that involve 

conflicting objectives in the era of computational intelligence [1,2]. In multi-objective 
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optimization, the goal is always to find a set of solutions, each with a different trademark 

among the objectives. This is unlike single-objective optimization, which gives a single 

solution [1]. Multi-objective optimizers have been applied in real-world applications. They 

are found in engineering designs [2,3], environmental management, and financial planning. 

For example, one can optimize between service quality and energy use in cloud 

manufacturing [2]. In power systems engineering, there can be a trade-off between technical 

and economic effectiveness [3–7]. Also in industrial engineering, multi-objective optimizers 

help to balance conflicting objectives like cost efficiency and process quality [8]. 

The advantage of multi-objective optimization is its ability to give diverse options for 

decision-making. This diversity is crucial because it helps us make better decisions, especially 

when focusing on just one solution could lead to poor and suboptimal results [1,9]. Multi-

objective optimizers are of different kinds. Nature-inspired type is widely used due to its 

ability to navigate complex solutions effectively. One of these algorithms is MOGWO. 

MOGWO is an optimizer that solves complex multi-objective problems and is easy to 

implement [1]. This algorithm has successfully been used in many engineering studies 

including multi-objective power flow studies [10], multi-robot exploration [11], wind speed 

forecasting [12] and optimal sizing of microgrids [13]. It has also been used to solve problems 

such as energy planning for smart homes [14] and reactive power dispatch [15] and 

transportation location routing [16]. Despite the numerous applications of MOGWO, it still 

has some deficiencies, just like other metaheuristic algorithms. 

Common deficiencies of the MOGWO algorithm include limited performance and 

scalability, especially when the problem has many objectives [1,17]. The challenge of 

parameter tuning in Grey Wolf Optimizer (GWO) algorithms also exists [18]. The MOGWO 

algorithm depends on two parameters to balance between exploration and exploitation in 

solving multi-objective problems, and the choice of these parameters often affects the quality 

of the solution [19]. Another common issue with MOGWO is local optima entrapment, 

especially in cases where there is a need to find global optimum from many local optima 

[2,20–22]. 

Some improvements have been made to enhance the performance of the MOGWO 

algorithm. Yang et al. [23] proposed an improved MOGWO using the ranked-order-value 

rule for dynamic archive maintenance and solution representation. This algorithm performed 

better in coverage, spread, and convergence than MOGWO and Multi-Objective Particle 

Swarm Optimizer (MOPSO). Using a backward learning strategy, Yang et al [2] improved 

MOGWO to address diversity and local optimum issues. Tian et al. [20] improved MOGWO 

using multiple techniques. The strategy involved clustering non-dominated solutions, cluster 

density head wolves’ selection, and mutation operator for improved exploration. The results 

showed an enhanced distribution and diversity compared to the MOGWO algorithm. Another 

work by Gu [21] introduced an improved MOGWO (DCMOGWO) using dynamic chaos 

search techniques to solve local optima issues and search precision. DMOGWO outperformed 
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MOGWO and other nature-inspired algorithms in benchmarked problems. Tlili et al.  [17] 

developed an improved MOGWO (IMOGWO) to help deal with many objectives. In a 

comparative study with MOGWO and other optimizers, IMOGWO provided better 

convergence and exploration. Al-Tashi et al. [24] proposed a binary variant of MOGWO 

(BMOGWO-S) to enhance feature selection in classification. BMOGW-S showed effective 

classification and feature reduction error rates compared with multi-objective optimizers 

using the UCI dataset. Other variants of MOGWO that offer enhanced performance include 

NSGWO [25], Levy-based MOGWO (LMOGWO) [26], improved MOGWO based on 

individual diversity (IMOGWO) [27], Advanced MOGWO (MOAGWO) [28] and Hybrid 

MOGWO (HMOGWO) [29]. 

The aforementioned variants of MOGWO have advanced its performance. However, 

fundamental defects like avoiding local optima, enhanced parameter tuning, maintaining 

diversity, and improving convergence still need attention. Though some variants introduced 

techniques and mechanisms for enhanced parameter tuning, the issue of tuning parameters to 

balance between exploration and exploitation has not been comprehensively tackled. There 

is still the need for intuitive and efficient approaches to parameter tuning. 

This study proposes an Enhanced MOGWO using adaptive diversity tuning and levy 

flight (EMOGWO ADTLF) theories to enhance parameter tuning. This enhancement adjusts 

the control parameters dynamically to balance between exploration and exploitation. This 

ensures better exploration by reaching the global optimal solutions and reducing local optima 

entrapment. It also provides better convergence of the obtained Pareto solution and robustness 

in handling complex and different optimization tasks.  

The rest of the paper is structured into sections: Section 2 explains the MOGWO. 

Section 3 presents the proposed EMOGWO-ADTLF using the population diversity tuning 

technique and levy flight theories. Section 4 highlights the benchmark functions used for 

testing and test parameters. Section 5 presents the results of implementing the enhanced 

MOGWO and its comparison with others. Conclusions drawn are provided in section 6. 

 

 

2. MULTI-OBJECTIVE GREY WOLF OPTIMIZER 

 

2.1. MOGWO Algorithm 

 

 MOGWO is a nature-inspired algorithm based on the hunting behavior of grey wolves 

[1]. This algorithm advances the GWO, which can only solve a single objective problem [30].  

The GWO employs simulated social leadership and encircling behavior to discover 

optimal solutions. With regard to social leadership, the decreasing order of dominance is 

designated as alpha (α), beta (β), delta (δ) and omega (ω) wolves. This hierarchy influences 

the decision-making process in the search space [1,30]. 
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The encircling mechanism observed in grey wolves during hunting is modeled using 

(1) and (2).  

�⃗⃗�  =  |𝐶  . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|                                                               (1) 

 

𝑋 (𝑡 +  1) =  𝑋 𝑝 (𝑡) − 𝐴 ∙  �⃗⃗�                                                        (2) 

 

 𝑋 𝑝 is the location vector of the prey, while 𝑋  is the position vector of a wolf, and t indicates 

the current iteration. The vectors 𝐴  and 𝐶  represent coefficients. 

The calculation of vectors 𝐴  and 𝐶  are given in (3) and (4). 

 

𝐴 = 2 𝑎 ∙ 𝑟 1 − 𝑎                                                                       (3) 

 

𝐶 = 2 ∙ 𝑟 2                                                                         (4) 

 

Here, 𝑎  (convergence factor) linearly decreases from 2 to 0 during the iterations. 𝑟 1 and 𝑟 2 are 

random vectors within the [0, 1] range. 

The GWO preserves the top three solutions obtained thus far and compels other search 

agents, including the ω, to adjust their locations relative to these solutions. Equations (5) to (11) 

are iteratively applied to each search agent throughout the search process, simulating the 

hunting behavior and identifying promising areas within the search region [30]. 

 

 𝐷⃗⃗  ⃗𝛼  =  |𝐶 1  ∙ 𝑋 𝛼  − 𝑋 |                                                                     (5) 

 

�⃗⃗� 𝛽  =  |𝐶 2  ∙ 𝑋 𝛽 − 𝑋 |                                                                    (6) 

 

   �⃗⃗� 𝛿  =  |𝐶 3  ∙ 𝑋 𝛿 − 𝑋 |                                                                    (7) 

 

𝑋 1 = |𝑋 𝛼 − 𝐴 1 ∙ (�⃗⃗� 𝛼)|                                                                 (8) 

 

       𝑋 2 = |𝑋 𝛽 − 𝐴 2 ∙ (�⃗⃗� 𝛽)|                              (9) 

 

𝑋 3 = |𝑋 𝛿 − 𝐴 3 ∙ (�⃗⃗� 𝛿)|                                                               (10) 

 

�⃑�(𝑡 +  1) =
�⃗� 1+�⃗� 2+�⃗� 3 

3
                                                               (11) 

 

The GWO optimization process begins by randomly generating solutions as the initial 
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population. Through the optimization, the three best solutions obtained thus far are saved and 

designated as α, β, and δ) solutions. The position updating equations (5) to (11) are activated 

for each wolf (search agents excluding alpha, beta, and delta). Simultaneously, parameters 𝐴⃗⃗  ⃗  

and 𝑎  experience a linear decrease over the iteration. Consequently, search agents move away 

from the prey when  𝐴⃗⃗  ⃗>1 and move close to the prey when  𝐴⃗⃗  ⃗<1. Ultimately, the position and 

score of the α solution are recorded as the best solutions achieved during optimization once the 

iterations have ended [30]. 

To turn the GWO into a multi-objective optimizer (MOGWO), two features are added. 

The first component is the archive, and the second is the leader selection strategy. The archive 

stores the non-dominated solutions. The leader selection strategy helps obtain the α, β, and δ 

solutions and make them leaders. In the archive, an archive controller manages, saves, and 

retrieves Pareto solutions during iterations. A specific rule governs the entry of new solutions 

into the archive. If an archive member dominates any new solution, entry is not allowed. New 

solutions can enter the archive if it dominates one or more members. In this case, the dominated 

solutions are deleted. New solutions are also allowed entry if there is no dominance between 

them and stored archive solutions. The MOGWO algorithm has a grid mechanism that helps to 

rearrange the objective space when an archive gets full. The mechanism deletes solutions from 

the most crowded areas and stores the new solutions in the least overcrowded zones. This 

ensures better distribution of solutions [1]. 

GWO algorithm uses the parameter ′𝒂′ to decide the search radius. This value controls 

the exploration-exploitation trade-off. The parameter ranges from 0 to 2, decreasing linearly 

during the iteration. This decrease assists the algorithm by reducing parameter tuning. However, 

some defects may affect the algorithm performance depending on the problem [19]. The 

challenges include: 

• Excessive early exploration: If the initial value of ′𝒂′ is too high, the algorithm will 

likely over-explore without looking for optimal regions. This may delay convergence. 

• Premature Exploitation: If ′𝒂′ decreases rapidly, it could cause early exploitation. The 

algorithm gets trapped in local optima and misses better solutions. 

• Fine-tuning difficulty: Determining the optimal starting and ending value for linear 

tuning techniques may require adjustment and experimentation depending on the type 

of problem. 

 

2.2. Proposed EMOGWO-ADTLF Using Population Diversity Tuning Technique 

and Levy Flight 

 

In this work, population diversity is employed to improve the performance of MOGWO. 

Population diversity in metaheuristics refers to the variety and spread of possible solutions 

within the population evaluated by the algorithm. It measures how different the individuals 
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(solutions) in the population are from each other. High diversity means the solutions are spread 

across a wide area of the search space, while low diversity indicates that solutions are clustered 

closely together. Maintaining diversity within the population in algorithms is essential in 

balancing exploration and exploitation. Population diversity reduces premature convergence, 

helping to prevent suboptimal performance. Diversity is crucial in dynamic optimization 

problems where the nature of the problem keeps changing. In multi-objective optimization, 

diversity helps to search the entire Pareto front to determine the global solution [31].  

An adaptive population diversity scheme is introduced into MOGWO to deal with the 

issues of excessive exploration, early exploitation, and fine-tuning difficulty. The proposed 

adaptive population diversity scheme dynamically adjusts the parameter ‘𝒂’ depending on the 

problem. The proposed scheme is presented in presented in algorithm 1. 

 

Algorithm 1: Proposed adaptive scheme to tune ‘𝒂’ 

start  

1 Set diversity threshold  

2 For each pair of wolves (i, j), calculate the Euclidean distance between their current 

positions in the solution space using:   

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖ 

    Xi and Xj are adjacent search agents (wolves). 

3     For each distance calculated, normalize the distances using: 

 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑚𝑎𝑥 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

4         Calculate the average of all normalized distances as a measure of the diversity 

of the  

        wolves using:  

 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  
1

𝑁(𝑋) × (𝑁(𝑋) − 1)
∑ ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑖, 𝑗)

𝑁(𝑥)

𝑗=𝑖+1

𝑁(𝑋)−1

𝑖=𝑖

 

                where N(X) is the number of wolves. 

5                If diversity < diversity threshold  

6                      Adjust 𝑎 as;  𝑎 = 𝑎 × 1.05  (exploration)  

7                If diversity > diversity threshold  

8                     Adjust 𝑎 as; 𝑎 = 𝑎 × 0.95   (exploitation) 

9                     Adjust 𝑎 to stay within bounds as; max[0.1,min(𝑎, 2)]   

10    End 

11 End 
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The adaptive scheme enhances MOGWO in the following ways.   

• It adjusts ′𝒂′ upward to allow the search agents (wolves) to explore new optimal regions 

by moving away from their current location when there is high level of similarity within 

the population. 

• It adjusts ′𝒂′ downwards to allow search agents to focus narrowly on richer regions 

when solutions are highly scattered. This encourages exploitation and enhances 

convergence to the optimal solution. 

The adaptive technique provides flexible tuning of parameters. It not only improves 

convergence but also provides robustness. The scheme improves convergence because 

stagnation and excessive exploration are prevented. The tuning method equips MOGWO with 

the robustness to effectively deal with complex and diverse problems.  

In addition to the adaptive scheme, a Levy flight operator is employed to enhance the 

algorithm.  Levy flight is a random walk with a step size that follows a heavy-tailed probability 

distribution. This approach is used in optimization algorithms to enable a search strategy that 

combines local and global exploration efficiently [32]. Using steps of varying lengths, levy 

flight helps the algorithm explore better by reaching diverse regions and escaping local optima 

entrapment [33].  

To implement the levy-based technique in MOGWO, the levy flight operator is 

introduced into (4) to modify the parameter ′𝑪′. In (4), ′𝑪′ is a critical parameter determining 

the quality of solution updates in the GWO.  

The modified ′𝑪′ parameter is defined according to (12) 

 

𝐶 = 𝑙𝑒𝑣𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠)                       (12) 

 

Levy Flight operator is applied to equation (4) to improve MOGWO as follows.  

 

Step 1: Calculate the step size (Δ) for the levy distribution using (13). This ensures that 

the step size is appropriate for the problem’s dimensionality. 

 

𝛥 =
1

√𝐷
                                                                  (13) 

 

where D is the problem’s dimension.                                        

 

Step 2: Generate a random number from the Cauchy distribution as a Cauchy number 

(f(x)). This work uses the standard probability distribution function (PDF) with x 

having location parameter 0 and scale parameter 1 defined according to (14). 

 

 𝑓(𝑥) =
1

𝜋(1+𝑥2)
                                                               (14)  
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Step 3:  Calculate the levy number (L) using (15). 

 

𝐿 = 𝑠 ×  𝑓(𝑥)                                                             (15) 

The flow chart of EMOGWO-ADTLF incorporating adaptive population diversity and 

levy flight is shown in fig. 1. 

 

 

Fig. 1. Flow Chart of EMOGWO-ADTLF 
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3. BENCHMARK FUNCTIONS USED AND TEST PARAMETERS 

 

3.1. Benchmark Functions 

 

Eight standard multi-objective test functions in the CEC 2009 [34] were used as test 

beds. Table 1 presents the benchmark problems chosen. These test functions offer diverse multi-

objective search spaces with distinct Pareto fronts, including convex, non-convex, 

discontinuous, and multi-modal scenarios.  

In addition, this study also used two benchmark real-world engineering problems. The 

use of these problems demonstrates the applicability and robustness of multiobjective 

optimization algorithms in solving complex, real-world engineering tasks that involve multiple 

conflicting objectives. They include the design of the welded beam and the Disc Brake. The 

welded beam multi-objective design is a well-known test problem in many studies. This 

benchmark design has four variables. They include the beam’s thickness (h), width (w), depth 

(d) and length (L). The objective is to reduce the fabrication cost (c) and the end deflection (δ). 

The main constraints are shear stress, bending stress, and buckling load [35,36]. The detailed 

equations of this problem are provided in Table 2.  

The goals of the multiple-disc brake are to reduce the brake's mass and minimize the 

stopping time. The variables to be determined in the design are the force (F), the number of 

friction surfaces (s) as well as inner and outer radius (r and R). The design must adhere to 

several constraints, including the minimum allowable length between the radii, the maximum 

allowable length of the brake, as well as limitations related to pressure, temperature, and torque 

[35,36]. The objectives and constraints of this problem are also shown in Table 2. 

 

Table 1. Test Functions, UF1 – UF8 

Function                                                Mathematical Expression 

UF1 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ [𝑥𝑗 −  𝑠𝑖𝑛 (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )]

2

𝑗 ∈ 𝐽1 , 

𝑓2 =  1 – √ 𝑥 + 
2

|𝐽2|
∑ [𝑥𝑗 −  𝑠𝑖𝑛 (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )]

2

𝑗 ∈ 𝐽2 , 

𝐽1  =  {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛},  𝐽2  = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛} 

 𝑃𝐹 𝑓2 = 1 − √𝑓1, 0 ≤ 𝑓1 ≤ 1 

UF2 

𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ 𝑦𝑗

2:   𝑓2 =  1 – √ 𝑥 +
2

|𝐽2|
∑ 𝑦𝑗

2
𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 , 

𝐽1  =  {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛},     𝐽2  = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤  𝑛} , 𝑦𝑗

= {
𝑥𝑗 − [0.3𝑥1

2 cos (24𝜋𝑥1  + 
4𝑗𝜋

𝑛
 ) + 0.6𝑥1] cos (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )  𝑖𝑓 𝑗 ∈  𝐽1

𝑥𝑗 − [0.3𝑥1
2 cos (24𝜋𝑥1  +  

4𝑗𝜋

𝑛
 ) + 0.6𝑥1] cos (6𝜋𝑥1  +  

𝑗𝜋

𝑛
 )  𝑖𝑓 𝑗 ∈  𝐽2

} 

𝑃𝐹: 𝑓2 = 1 − √𝑓1, 0 ≤ 𝑓1 ≤ 1 
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Function                                                Mathematical Expression 

UF3 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2 𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 )𝑃𝐹: 0 ≤ 𝑓1 ≤ 1. 

 𝑓2 = √𝑥1  +  
2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2 𝑗 ∈ 𝐽1𝑗 ∈ 𝐽1 )𝑃𝐹: 𝑓2 = 1 − √𝑓1. 

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  𝑦𝑗 = 𝑥𝑗 − 𝑥𝑗
0.5(1+

3(𝑗−2)
𝑛−2

)
, 𝑗 = 2,3, … , 𝑛 ,,   

UF4 

 𝑓1  = 𝑥1 + 
2

|𝐽1|
∑ ℎ(𝑦𝑗)  

𝑗 ∈ 𝐽1

 𝑓2  = 1 − 𝑥2 + 
2

|𝐽2|
∑ ℎ(𝑦𝑗),

𝑗 ∈ 𝐽2

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  

 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛 , ℎ(𝑡)  =

|𝑡|

1 + 𝑒2|𝑡|
 

𝑃𝐹: 𝑓2 = 1 − 𝑓2, 0 ≤ 𝑓1 ≤ 1 

UF5 

 𝑓1  = 𝑥1 + (
1

2𝑁
) + 𝜖 |sin(2𝑁𝜋𝑥1)| +

2

|𝐽1|
∑ ℎ(𝑦𝑗)𝑗 ∈ 𝐽1 , 

 𝑓2  = 1 − 𝑥1 + (
1

2𝑁
) + 𝜖 |sin(2𝑁𝜋𝑥1)| +

2

|𝐽2|
∑ ℎ(𝑦𝑗)𝑗 ∈ 𝐽2 , 

𝐽1 𝑎𝑛𝑑 𝐽2  =  𝑈𝐹1, 𝜖 > 0 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛  , ℎ(𝑡)

=  2𝑡2 − cos(4𝜋𝑡) + 1 

Its PF has 2𝑁 + 1 solutions: (
𝑖

2𝑁
, 1 −

𝑖

2𝑁
) for 𝑖 = 0,1, … ,2𝑁 

UF6 

𝑓1  = 𝑥1 + 𝑚𝑎𝑥 {0,2 (
1

2𝑁
+  𝜖) sin(2𝑁𝜋𝑥1)} +

2

|𝐽1|
(4∑ 𝑦𝑗

2 −𝑗 ∈ 𝐽1

2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 1 𝑗 ∈ 𝐽1 ). 

 𝑓2  = 1 − 𝑥1 + 𝑚𝑎𝑥 {0,2 (
1

2𝑁
+  𝜖) sin(2𝑁𝜋𝑥1)} +

2

|𝐽2|
(4∑ 𝑦𝑗

2 −𝑗 ∈ 𝐽2

2∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 1 𝑗 ∈ 𝐽2 ). 

𝐽1 𝑎𝑛𝑑 𝐽2  = 𝑈𝐹1,  𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛 

PF: One isolated  (0,1), and 𝑁 disconnected: 𝑓2 = 1 − 𝑓1, 𝑓1 ∈

⋃  𝑁
𝑖=1 [

2𝑖−1

2𝑁
,
2𝑖

2𝑁
] . 𝑁 = 2 

UF7 

𝑓1 = √𝑥1
5 +

2

|𝐽1|
∑ 𝑦𝑗

2  𝑗 ∈ 𝐽1 𝑓2 = 1 − √𝑥1
5 +

2

|𝐽2|
∑ 𝑦𝑗

2 𝑗 ∈ 𝐽2 0 ≤ 𝑓1 ≤ 1. 

𝐽1 𝑎𝑛𝑑 𝐽2  =  𝑈𝐹1  𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1  +  
𝑗𝜋

𝑛
) ,    𝑗 = 2,3, … , 𝑛, 𝑃𝐹: 𝑓2 = 1 − 𝑓1, 

UF8 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +
2

|𝐽1|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  +  

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽1 . 

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +
2

|𝐽2|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  +  

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽2 . 

𝑓3 = sin(0.5𝑥1𝜋) +
2

|𝐽3|
∑ (𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1  + 

𝑗𝜋

𝑛
)
2
)𝑗 ∈ 𝐽3 . 

𝐽1  =  {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 − 1 𝑖𝑠 𝑎 𝑚𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓  3 }  

, 𝐽2 = {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 − 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓  3 } PF is 𝑓1
2 + 𝑓2

2 + 𝑓3
3 = 1,  

 𝐽3 = {𝑗|3 ≤ 𝑗 ≤  𝑛, 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  3 }, Its , 0 ≤ 𝑓1, 𝑓2𝑓3 ≤ 1 
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Table 2. Benchmarked Engineering Problems 

Problem Objectives and Constraints 

Welded 

Beam 

Design 

minimise 𝑓1(𝒙) = 1.10471𝑤2𝐿 + 0.04811𝑑ℎ(14.0 + 𝐿), 𝑓2 = 𝛿, 

subject to 

𝑔1(𝒙) = 𝑤 − ℎ ≤ 0, 𝑔2(𝒙) = 𝛿(𝒙) − 2.5 × 10−1 ≤ 0, 

𝑔3(𝒙) = 𝜏(𝒙) − 1.36 x 104x ≤ 0, 𝑔4(𝒙) = 𝜎(𝒙) − 3.0 x 104 ≤ 0, 

𝑔5(𝒙) = 0.10471𝑤2 + 0.04811ℎ𝑑(14 + 𝐿) − 5.0 ≤ 0, 𝑔6(𝒙)

= 1.3 × 10−1 − 𝑤 ≤ 0, 

𝑔7(𝒙) = 6,000 − 𝑃(𝒙) ≤ 0, 0.1 ≤ 𝐿, 𝑑 ≤ 10 and 1.25 x 10−1 ≤ 𝑤, ℎ ≤ 2.0 

where 

𝜎(𝒙) =
504,000

ℎ𝑑2
, 𝑄 = 6,000 (14 +

𝐿

2
) , D =

1

2
√𝐿2 + (𝑤 + 𝑑)2 

  𝐽 = √2𝑤𝐿 [
𝐿2

6
+

(𝑤 + 𝑑)2

2
] , 𝛿 =

65,856

30,000ℎ𝑑3
, 𝛽 =

𝑄𝐷

𝐽
 

𝛼 =
6,000

√2𝑤𝐿
, 𝑃 = 0.61423 × 106

𝑑ℎ3

6
(1 −

𝑑√30/48

28
) 

Brake Disc 

Design 

Minimize 𝑓1(𝒙) = 4.9 × 10−5(𝑅2 − 𝑟2)(𝑠 − 1), 

𝑓2(𝒙) =
9.82 × 106(𝑅2 − 𝑟2)

𝐹𝑠(𝑅3 − 𝑟3)
 

subject to 

𝑔1(𝑥) = 20 − (𝑅 − 𝑟) ≤ 0, 

𝑔2(𝑥) = 2.5(𝑠 + 1) − 30 ≤ 0 

𝑔3(𝑥) =
𝐹

3.14(𝑅2−𝑟2)
− 0.4 ≤ 0, 

𝑔4(𝒙) =
2.22×10−3𝐹(𝑅3−𝑟3)

(𝑅2−𝑟2)2
− 1 ≤ 0, 

𝑔5(𝒙) = 900 −
2.66 x 10−2𝐹𝑠(𝑅3−𝑟3)

(𝑅2−𝑟2)
≤ 0. 

5.5 x 10 ≤ 𝑟 ≤ 8.0 x 10, 7.5 x 10 ≤ 𝑅 ≤ 1.1 x 102 

1.0 x 103 ≤ 𝐹 ≤ 3.0 x 103, 2 ≤ 𝑠 ≤ 20. 

 

3.2. Performance Metrics 

 

This study uses two performance metrics with abilities to test for convergence, diversity, 

and spread to measure the performance of the EMOGWO-ADTLF and compare it with other 

muti-objective algorithms. The metrics include Inverted Generational Distance (IGD) [37] and 

Hypervolume (HV) [38].  

IGD is a measue that determines the diversity and convergence of a multi-objective 

algorithm. It assesses how close the obtained solutions are to the Pareto front. It also determines 
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how the obtained solution spread over the Pareto solution. The value of IGD obtained is an 

indication of how well an algorithm maintains its balance. A low IGD value shows an algorithm 

is well balanced. It shows that the algorithm is neither wandering in non-optimal regions (over-

exploration) nor stuck in local optima (over-exploitation) [37]. IGD is mathematically 

represented as (19). 

 

𝐼𝐺𝐷 =
√∑  𝑛

𝑖=1  𝑑𝑖
2

𝑛
                                                                          (19)    

  

where 𝑛 is the count of pareto solutions,  𝑑𝑖 indicates the euclidean distance from the 𝑖th  pareto 

optimal solution and the nearest obtained solution.  

HV is a performance metric that measures the volume of the Pareto front occupied by 

the obtained solution. It measures diversity, convergence and spread of the solution. It is a 

widely used metric for benchmarking the performance of multi-objective optimizers. The HV 

is determined with respect to a reference point. The reference point is a value worse than the 

any value in the obtained Pareto solutions. A high hypervolume means a better diversity, 

convergence, and distribution of the obtained solution. Mathematically, HV is given by (20) 

[38]. 

𝐻𝑉(𝑆, 𝑟) = 𝜆𝑚(⋃  𝑧∈𝑆 [𝑧; 𝑟])                                                            (20) 

 

𝜆𝑚 is the Lebesgue measure. It is the size of true Pareto front occupied by the solution. m is the 

number of objectives.  ⋃  𝑧∈𝑆  is the union of points z in the set S. r is the reference point. 

 

3.3. Experimental Setups 

 

The study used two experimental setups. The first experiment compared EMOGWO-

ADTLF with MOGWO and two high-performing other variants of MOGWO in the literature 

namely NSGWO [25] and DCMOGWO [21]. This experiment analyzed the graphs of obtained 

Pareto against true Pareto and determined IGD and HV values. The second experiment also 

compared EMOGWO-ADTLF to three well-known, efficient, and robust algorithms. They 

include Multi-Objective Mayfly Algorithm (MMA) [39] , Multi-Objective Ant Lion Optimizer 

(MOALO) [36] and Multi-Objective Dragonfly Algorithm (MODA) [40] using multi-objective 

test functions. In the third experiment, MOGWO was again compared with MMA, MOALO 

and MODA using real-world engineering benchmarked problems. The metrics of comparison 

were the IGD and HV. 

This work used MATLAB 2021 to execute all algorithms to obtain the Pareto solutions. 

The general parameters of all algorithms were as follows:  

• Number of search agents: 100 

• Number of iterations: 3000 
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• Number of runs: 03 

• Archive size: 100. 

These parameters were selected to guarantee a thorough and efficient evaluation of the 

multi-objective algorithms. Utilizing 100 search agents strikes a practical balance, offering 

enough diversity without excessively taxing computational resources. The selected 3000 

iterations ensure the search process is detailed enough to discover and refine multiple solutions, 

accounting for the complexity and multi-objective nature of the problems. An archive size of 

100 maintains a balance between storing a diverse set of Pareto-optimal solutions and managing 

computational resources. Conducting multiple runs provides statistically significant insights 

into the performance of the algorithms.  

Subsequently, there were comparisons of obtained Pareto solutions and true Pareto 

fronts using the Python library Pymoo. Pymoo is a specialized multi-objective optimization and 

analysis tool. The desktop computer used for this study was an HP ZB G4 workstation with the 

processor Intel® Xeon ® Silver 4108 CPU @ 1.80 GHz (16 CPUs) and memory of 64 GB. 

This specification provided enough computational power and efficiency for the rigorous 

simulations and computations in this work.  

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. Analysis of EMOGWO-ADTLF against MOGWO and its Variants 

 

Fig. 2 presents the plots of the obtained Pareto fronts against the true Pareto fronts for 

UF1 to UF3. In the UF1 graph, EMOGEO-ADTFL and MOGWO show better convergence and 

spread than NSGWO and DCMOGWO. EMOGWO-ADT has a better distribution of Pareto 

solutions than MOGWO. All algorithms show better convergence, diversity, and distribution in 

UF2 than in UF1. Of the four algorithms, NSGWO shows better coverage. In UF3, the 

algorithms struggle to approximate the Pareto fronts with EMOGWO-ADTLF having better 

spread and convergence than the rest.  

Fig. 3 shows the graph of test functions UF4. UF5 and UF6. In UF4, EMOGWO-

ADTLF and DCMOGWO closely approximate the Pareto fronts and have better spread. 

NSGWO and MOGWO show good convergence, but poor distribution compared to 

EMOGWO-ADTLF and DCMOGWO. All the algorithms find it difficult to approximate the 

Pareto fronts in UF5 and UF6, with only a few non-dominated Pareto solutions. NSGWO 

appears to have a better convergence and spread than the rest in UF6. 



Carpathian Journal of Electrical Engineering                        Volume 18, Number 1, 2024 

20 

 

Fig. 2: Graph of test functions UF1, UF2 and UF3 
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Fig. 3: Graph of test functions UF4, UF5 and UF6 

 

The plots of Pareto solutions for the algorithms are shown in fig. 4. For the UF7, 

EMOGWO-ADTLF shows better convergence, spread and distribution than the rest of the 

algorithms.  MOGWO shows good spread but poor distribution while NSGWO and 

DCMOGWO struggle with both spread and distribution. In the three-dimension UF8 function, 

EMOGWO-ADTLF and NSGWO have better spread and distribution but not all the obtained 

Pareto fronts converge to the Pareto front. MOGWO has good convergence but struggles with 

spread and coverage. DCMOGWO has poor convergence, spread and distribution. 

Overall, EMOGWO-ADTLF shows a consistent close approximation of the Pareto 

fronts in most of the test functions. NSGWO, MOGWO and DCMOGWO perform variably 

across the test functions. It shows reasonable approximations but sometimes suffers from spread 

and distribution. DCMOGWO and MOGWO’s performance reduces as the complexity of the 

functions increases.  
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Fig. 4: Graph of test functions UF7 and UF8 

 

4.1.1.  Analysis of IGD and HV Values for EMOGWO-ADTLF and MOGWO Variants  

The results of IGD values for EMOGWO-ADTLF, MOGWO, NSGWO and 

DCMOGWO are presented in Table 3. The statistical measures are the average (AVG), median 

(MDN), standard deviation (SD), best score (BS) and worst score (WS). In UF1, EMOGWO-

ADTLF dominates in the performance metrics, obtaining the best values in average, median, 

best and worst score values. For this function, EMOGWO-ADTLF shows high diversity and 

convergence. This implies the algorithm can balance exploration and exploitation for this test 

function. DCMOGWO outperforms NSGWO and MOGWO in terms of average IGD but below 

EMOGWO-ADTLF. NSGWO has the best standard deviation value. For the UF2 function, 
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EMOGWO-ADTLF has the best possible value, but its best average value is slightly below 

NSGWO. In UF3, UF4 and UF6 functions, EMOGWO-ADTLF dominates in both average and 

best scores. This again shows the strength of EMOGWO-ADTLF to provide convergence and 

diversity in these functions. NSGWO shows strength in closely approximating the Pareto fronts 

in the UF6 function. It dominates in four of the performance metrics. In UF7, EMOGWO-

ADTLF shows its highest strength, dominating in all the performance metrics. It is an indication 

of the ability of MOGWO-ADTLF to handle complex problems. NSGWO has the lowest 

average, median, standard deviation, and worst values in UF8. This performance of EMOGWO-

ADTLF closely follows NSGWO. Both MOGWO and DCMOGWO struggle to handle this 

complex problem. For this three-dimensional problem function, NSGWO and EMOGWO-

ADTLF have better diversity and convergence. 

Across all the functions, EMOGWO-ADTLF frequently performs better than other 

algorithms in terms of IGD, showing high effectiveness and efficiency. This is proof of 

convergence and diversity. It demonstrates the ability of EMOGWO-ADTLF to provide a 

balance between exploration and exploitation as well as closely approximating the Pareto 

fronts. NSGWO also shows competitive performance especially in complex problems.  

Table 4 presents the HV value for EMOGWO-ADTLF, MOGWO, NSGWO and 

DCMOGWO. EMOGWO-ADTLF has the highest values in terms of average, median and 

worst values in UF1 and UF2. It also has the highest best value in UF1. This shows that the 

Pareto solutions of EMOGWO-ADTLF cover the objective space effectively in both functions. 

MOGWO and DCMOGWO are the second-best performers for UF1 with NSGWO providing 

competitive performance to EMOGWO-ADTLF in UF2, obtaining the highest best value. The 

dominance of EMOGWO-ADTLF continues in both UF3 AND UF4, obtaining the highest 

scores in average, median and best values. DCMOGWO outperforms MOGWO and NSGWO 

in the two test problems. NSGWO also covers the objective space effectively in UF5 and UF6. 

It obtains the highest HV values in four of the performance metrics in both functions. In UF7 

and UF8, EMOGWO-ADTLF again shows dominant performance in the performance metrics. 

It also indicates the strength of EMOGWO-ADTLF in handling complex problems more 

effectively. The performance of EMOGWO-ADTLF in these test functions is followed by 

NSGWO.MOGWO and DCMOGWO are the worst performing algorithms in UF7 and UF8 

respectively. 

EMOGWO-ADTLF more often performs better than other algorithms in terms of HV, 

obtaining the highest or near-highest HV values. It also gives competitive standard deviation 

values. This shows how effective EMOGWO-ADTLF covers the objective space and is a good 

algorithm for different optimization problems. NSGWO also performs well in certain functions, 

but its performance fluctuates depending on the problem being considered. 
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Table 3. Analysis of IGD Values 

FUNCT- 

ION 

STATI- 

STICS 

EMOGWO-

ADTLF 

MOGWO NSGWO DCMOGWO 

 

 

 

UF1 

 

 

 
 

AVG 5.7969E-02 7.1311E-02 7.9473E-02 6.7857E-02 

MDN 5.7273E-02 8.4320E-02 7.6504E-02 6.5035E-02 

SD 1.4157E-02 2.0105E-02 4.7193E-03 1.4144E-02 

BS 4.0989E-02 4.2911E-02 7.5781E-02 5.2119E-02 

WS 7.5646E-02 8.6701E-02 8.6134E-02 8.6418E-02  
          

 

 

 

UF2 

 

 

 
 

AVG 3.3437E-02 4.5888E-02 3.2598E-02 4.1171E-02 

MDN 3.2656E-02 4.5811E-02 3.2813E-02 4.1180E-02 

SD 1.7721E-03 2.3011E-03 3.1591E-04 2.9645E-04 

BS 3.1764E-02 4.3109E-02 3.2151E-02 4.0804E-02 

WS 3.5889E-02 4.8744E-02 3.2829E-02 4.1530E-02  
          

 

 

 

UF3 

 

 

 
 

AVG 2.8641E-01 3.4817E-01 3.8643E-01 3.0021E-01 

MDN 3.2332E-01 3.4253E-01 3.8653E-01 3.2333E-01 

SD 5.9279E-02 1.1552E-02 6.7217E-04 3.3181E-02 

BS 2.0276E-01 3.3771E-01 3.8556E-01 2.5329E-01 

WS 3.3313E-01 3.6427E-01 3.8720E-01 3.2402E-01  
          

 

 

 

UF4 

 

 

 
 

AVG 4.9430E-02 5.8564E-02 6.9335E-02 5.1609E-02 

MDN 4.9253E-02 5.3530E-02 6.5971E-02 5.1530E-02 

SD 1.1361E-03 1.0918E-02 7.1741E-03 9.7808E-04 

BS 4.8136E-02 4.8441E-02 6.2727E-02 5.0453E-02 

WS 5.0902E-02 7.3722E-02 7.9306E-02 5.2845E-02  
          

 

 

 

UF5 

 

 

 
 

AVG 4.7367E-01 4.7994E-01 1.7046E+00 5.4062E-01 

MDN 5.3407E-01 5.2411E-01 1.7113E+00 5.2327E-01 

SD 1.4897E-01 1.1658E-01 1.0118E-02 9.8080E-02 

BS 2.6869E-01 3.2030E-01 1.6903E+00 4.3011E-01 

WS 6.1826E-01 5.9541E-01 1.7122E+00 6.6847E-01  
          

 

 

 

UF6 

 

 

 
 

AVG 6.5347E-01 5.7803E-01 2.0821E-01 4.4295E-01 

MDN 6.5014E-01 5.8364E-01 1.7291E-01 4.3031E-01 

SD 4.1635E-02 7.9377E-02 5.7970E-02 1.0207E-01 

BS 6.0423E-01 4.7813E-01 1.6178E-01 3.2474E-01 

WS 7.0605E-01 6.7232E-01 2.8994E-01 5.7380E-01  
          

 

 

 

UF7 

 

 

 
 

AVG 4.2915E-02 1.4181E-01 5.7573E-02 6.1463E-02 

MDN 4.7423E-02 6.8108E-02 5.7461E-02 6.3971E-02 

SD 9.0520E-03 1.1060E-01 1.0112E-02 7.8416E-03 

BS 3.0284E-02 5.9182E-02 4.5245E-02 5.0854E-02 

WS 5.1036E-02 2.9813E-01 7.0013E-02 6.9564E-02  
          

 

 

 

UF8 

 

 

 
 

AVG 1.6637E-01 9.1158E-01 1.5490E-01 1.3326E+00 

MDN 1.6880E-01 9.1806E-01 1.5476E-01 9.1289E-01 

SD 1.1489E-02 2.6171E-02 1.3674E-03 6.4448E-01 

BS 1.5124E-01 8.7678E-01 1.5329E-01 8.4183E-01 

WS 1.7906E-01 9.3990E-01 1.5663E-01 2.2431E+00 



Carpathian Journal of Electrical Engineering           Volume 18, Number 1, 2024 

25 

Table 4. Analysis of HV Values 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 

MOGWO NSGWO DCMOGWO 

 

 

UF1 

AVG 1.0012E+00 9.6216E-01 9.6603E-01 9.7232E-01 

MDN 1.0095E+00 9.4560E-01 9.6965E-01 9.7123E-01 

SD 2.5703E-02 2.9627E-02 5.8174E-03 1.8139E-02 

BS 1.0278E+00 1.0038E+00 9.7063E-01 9.9507E-01 

WS 9.6647E-01 9.3711E-01 9.5783E-01 9.5068E-01  

 

 

UF2 

AVG 1.0539E+00 1.0317E+00 1.0516E+00 5.9579E-01 

MDN 1.0550E+00 1.0286E+00 1.0543E+00 5.9458E-01 

SD 1.9074E-03 6.0224E-03 4.9418E-03 1.7843E-03 

BS 1.0554E+00 1.0402E+00 1.0558E+00 5.9831E-01 

WS 1.0512E+00 1.0264E+00 1.0446E+00 5.9448E-01  

 

 

UF3 

AVG 6.3035E-01 5.1864E-01 4.4334E-01 6.1075E-01 

MDN 5.6133E-01 5.2197E-01 4.4324E-01 5.6512E-01 

SD 1.0299E-01 9.8704E-03 4.8824E-04 6.6666E-02 

BS 7.7593E-01 5.2871E-01 4.4398E-01 7.0501E-01 

WS 5.5379E-01 5.0523E-01 4.4279E-01 5.6211E-01  

UF4 AVG 6.7915E-01 6.6562E-01 6.6183E-01 6.7300E-01 

MDN 6.7905E-01 6.7018E-01 6.6571E-01 6.7250E-01 

SD 2.2381E-03 1.3642E-02 7.6380E-03 1.2247E-03 

BS 6.8195E-01 6.7958E-01 6.6862E-01 6.7400E-01 

WS 6.7647E-01 6.4711E-01 6.5116E-01 6.7100E-01  

 

 

UF5 

AVG 7.6565E-01 8.8663E-01 1.4245E+00 6.7332E-01 

MDN 6.3858E-01 8.7735E-01 1.4244E+00 7.7173E-01 

SD 3.1557E-01 1.2209E-01 1.4060E-01 1.5154E-01 

BS 1.1997E+00 1.0406E+00 1.5968E+00 7.8899E-01 

WS 4.5868E-01 7.4196E-01 1.2524E+00 4.5925E-01  

 

 

UF6 

AVG 5.0265E-01 5.6163E-01 1.2720E+00 7.9419E-01 

MDN 5.1714E-01 5.1641E-01 1.3061E+00 7.4149E-01 

SD 2.4046E-02 6.8006E-02 6.2818E-02 1.1729E-01 

BS 5.2205E-01 6.5775E-01 1.3259E+00 9.5675E-01 

WS 4.6876E-01 5.1073E-01 1.1839E+00 6.8433E-01       

 

 

UF7 

AVG 8.6040E-01 7.3017E-01 8.4892E-01 8.2923E-01 

MDN 8.5256E-01 8.1323E-01 8.4898E-01 8.2506E-01 

SD 1.6666E-02 1.2832E-01 2.4668E-02 1.1276E-02 

BS 8.8357E-01 8.2836E-01 8.7910E-01 8.4465E-01 

WS 8.4506E-01 5.4891E-01 8.1867E-01 8.1799E-01  

 

 

UF8 

AVG 2.4020E+00 1.0239E+00 2.2615E+00 4.4310E-01 

MDN 2.4011E+00 1.0425E+00 2.2783E+00 2.8703E-01 

SD 3.2163E-02 5.6601E-02 4.5080E-02 4.3959E-01 

BS 2.4419E+00 1.0820E+00 2.3063E+00 1.0423E+00 

WS 2.3631E+00 9.4713E-01 2.1998E+00 0.0000E+00 
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4.2. Analysis of EMOGWO-ADTLF against Other Multi-Objective Optimizers 

 

Table 5 presents the results of IGD values. EMOGWO-ADTLF dominates other 

algorithms in UF1 and UF2 functions. It achieves the lowest IGD value in terms of average, 

median, best and worst values. It also gives the lowest standard deviation value for UF2. In 

UF3, MODA outperforms all the algorithms, obtaining the best value in terms of average, 

median, standard deviation and worst scores. MOALO and EMOGWO-ADLLF provide 

competitive scores with MMA trailing all algorithms. EMOGWO-ADTLF obtains the lowest 

values in all the statistical metrics in UF4, showing more diversity and convergence in this 

problem. For the UF5, EMOGWO-ADTLF has the best values in overall best and average 

values. MOALO provides competitive performance, achieving the lowest median and worst 

value. MODA has the lowest standard deviation for this function. MOALO is the most dominant 

algorithm in the UF6 function. It has the best values for four of the metrics, including average 

values. EMOGWO-ADTLF again has the lowest values for all the performance metrics in UF7 

and UF8. This is a clear indication of the ability of EMOGWO-ADTLF to approximate the 

Pareto fronts and provide a balance between exploitation and exploration in complex problems.  

In all the IGD values, EMOGWO-ADTLF emerges as the top performer in most of the 

functions. It highlights the algorithm’s effectiveness, efficiency, diversity and adaptability in 

different problems. The other algorithms also show competitiveness in a few test problems. 

MODA’s overall performance is better than MOALO and MMA. 

The analysis of HV values is shown in Table 6.  In the UF1 and UF2 functions, 

EMOGWO-ADTLF has the highest values in average, median, best and worst values. It also 

has the best standard deviation value. This proves that EMOGWO-ADTLF has the best 

coverage and spread for these functions. MODA is the second-best performer for UF1 function 

with MOALO providing competitive performance to EMOGWO-ADTLF in UF2. MODA has 

dominant performance in the UF3 function, showing its ability to cover the objective space 

more effectively. The performance of MODA in UF3 is followed by MOALO and EMOGWO-

ADTLF. EMOGWO-ADTLF again outperforms all the other algorithms in UF4. The second-

best performer for this test function is MODA. In UF5 and UF6, MOALO is the top performer 

in terms of HV values. It has the best average, median and worst values. Its overall highest 

average value suggests that it effectively occupies the objective space. The performance of 

MOALO in test function UF5 is closely followed by EMOGWO-ADTLF. EMOGWO-ADTLF 

has the highest values in all the statistical metrics for test functions UF7 and UF8. This is an 

indication of the algorithm’s ability to produce solutions that cover the objective space. The 

performance is also a proof of the algorithm to perform in complex and high-dimension 

problems. MODA’s performance in these two test functions is better than MMA and MOALO.  

In the HV analysis, EMOGWO-ADTLF obtained the best HV value in most of the test 

functions. It indicates the effectiveness of EMOGWO-ADTLF. It can produce diverse and 

quality solutions, with effective distribution in the objective space. 
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Table 5. Analysis of IGD Values 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 

MMA MOALO MODA 

 

 

UF1 

  

  

  

  

AVG 5.7969E-02 5.0362E-01 1.2529E-01 8.0228E-02 

MDN 5.7273E-02 3.6851E-01 1.2531E-01 7.6724E-02 

SD 1.4157E-02 2.0709E-01 5.0827E-03 5.6834E-03 

BS 4.0989E-02 3.4614E-01 1.1906E-01 7.5715E-02 

WS 7.5646E-02 7.9621E-01 1.3151E-01 8.8244E-02 

  

  

  

  

  

  

 

 

UF2 

  

  

  

  

AVG 3.3437E-02 4.6596E-01 1.0055E-01 1.3648E-01 

MDN 3.2656E-02 4.8933E-01 9.5645E-02 1.5505E-01 

SD 1.7721E-03 4.6445E-02 8.2915E-03 5.5666E-02 

BS 3.1764E-02 4.0111E-01 9.3785E-02 6.0944E-02 

WS 3.5889E-02 5.0743E-01 1.1223E-01 1.9345E-01 

  

  

  

  

  

  

 

 

UF3 

  

  

  

  

AVG 2.8641E-01 4.9969E-01 2.2076E-01 1.6356E-01 

MDN 3.2332E-01 3.6962E-01 2.5563E-01 1.5164E-01 

SD 5.9279E-02 2.0679E-01 7.3376E-02 2.3194E-02 

BS 2.0276E-01 3.3789E-01 1.1869E-01 1.4306E-01 

WS 3.3313E-01 7.9157E-01 2.8797E-01 1.9599E-01 

  

  

  

  

  

  

 

 

UF4 

  

  

  

  

AVG 4.9430E-02 4.0835E-01 1.2166E-01 9.0255E-02 

MDN 4.9253E-02 4.3332E-01 1.2421E-01 8.5741E-02 

SD 1.1361E-03 1.4044E-01 1.3229E-02 9.3001E-03 

BS 4.8136E-02 2.2522E-01 1.0433E-01 8.1813E-02 

WS 5.0902E-02 5.6650E-01 1.3643E-01 1.0321E-01 

  

  

  

  

  

  

 

 

UF5 

  

  

  

  

AVG 4.7367E-01 6.7863E-01 4.7680E-01 7.0163E-01 

MDN 5.3407E-01 7.8823E-01 4.4111E-01 7.1891E-01 

SD 1.4897E-01 1.9160E-01 1.0164E-01 5.1014E-02 

BS 2.6869E-01 4.0923E-01 3.7405E-01 6.3233E-01 

WS 6.1826E-01 8.3844E-01 6.1523E-01 7.5365E-01 

  

  

  

  

  

  

 

 

UF6 

  

  

  

  

AVG 6.5347E-01 7.6945E-01 3.7119E-01 4.7254E-01 

MDN 6.5014E-01 8.5334E-01 3.5630E-01 4.3815E-01 

SD 4.1635E-02 2.2029E-01 6.3267E-02 4.9282E-02 

BS 6.0423E-01 4.6767E-01 3.0223E-01 4.3723E-01 

WS 7.0605E-01 9.8734E-01 4.5504E-01 5.4223E-01 

            

 

 

UF7 

  

  

  

  

AVG 4.2915E-02 4.5262E-01 1.8774E-01 6.8319E-02 

MDN 4.7423E-02 4.6748E-01 1.8716E-01 6.3320E-02 

SD 9.0520E-03 3.2862E-02 2.1535E-02 1.1269E-02 

BS 3.0284E-02 4.0706E-01 1.6166E-01 5.7714E-02 

WS 5.1036E-02 4.8333E-01 2.1440E-01 8.3923E-02 

            

 

 

UF8 

  

  

  

  

AVG 1.6637E-01 6.1608E-01 5.9863E-01 2.8547E-01 

MDN 1.6880E-01 6.0978E-01 6.1293E-01 3.1074E-01 

SD 1.1489E-02 1.0405E-02 3.6773E-02 3.7108E-02 

BS 1.5124E-01 6.0772E-01 5.4818E-01 2.3300E-01 

WS 1.7906E-01 6.3075E-01 6.3479E-01 3.1266E-01 
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Table 6. Analysis of HV Analysis 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTFL 

MMA MOALO MODA 

UF1 

  

  

  

  

AVG 1.0012E+00 5.0912E-01 8.9127E-01 9.5553E-01 

MDN 1.0095E+00 5.5278E-01 9.0266E-01 9.6276E-01 

SD 2.5703E-02 1.5508E-01 2.1287E-02 1.0963E-02 

BS 1.0278E+00 6.7343E-01 9.0971E-01 9.6380E-01 

WS 9.6647E-01 3.0116E-01 8.6144E-01 9.4004E-01 

  

  

  

  

  

  

 

 

UF2 

  

  

  

  

AVG 1.0539E+00 6.3847E-01 9.3339E-01 8.8999E-01 

MDN 1.0550E+00 6.3588E-01 9.4018E-01 8.7718E-01 

SD 1.9074E-03 2.2371E-02 1.5247E-02 8.5429E-02 

BS 1.0554E+00 6.6707E-01 9.4771E-01 1.0004E+00 

WS 1.0512E+00 6.1246E-01 9.1227E-01 7.9236E-01 

  

  

  

  

  

  

 

 

UF3 

  

  

  

  

AVG 6.3035E-01 5.1276E-01 7.5304E-01 8.3905E-01 

MDN 5.6133E-01 5.5765E-01 6.8235E-01 8.6249E-01 

SD 1.0299E-01 1.5291E-01 1.1236E-01 5.2533E-02 

BS 7.7593E-01 6.7351E-01 9.1163E-01 8.8839E-01 

WS 5.5379E-01 3.0711E-01 6.6512E-01 7.6628E-01 

  

  

  

  

  

  

 

 

UF4 

  

  

  

  

AVG 6.7915E-01 2.4300E-01 5.3547E-01 6.0787E-01 

MDN 6.7905E-01 1.9718E-01 5.2094E-01 6.1510E-01 

SD 2.2381E-03 7.5948E-02 2.6513E-02 1.8308E-02 

BS 6.8195E-01 3.5004E-01 5.7267E-01 6.2578E-01 

WS 6.7647E-01 1.8178E-01 5.1280E-01 5.8272E-01 

  

  

  

  

  

  

 

 

UF5 

  

  

  

  

AVG 7.6565E-01 4.3639E-01 8.0392E-01 3.4721E-01 

MDN 6.3858E-01 2.7468E-01 9.0798E-01 3.5879E-01 

SD 3.1557E-01 2.6200E-01 1.4734E-01 7.9437E-02 

BS 1.1997E+00 8.0596E-01 9.0822E-01 4.3819E-01 

WS 4.5868E-01 2.2854E-01 5.9556E-01 2.4464E-01 

  

  

  

  

  

  

 

 

UF6 

  

  

  

  

AVG 5.0265E-01 3.9110E-01 8.4325E-01 7.4843E-01 

MDN 5.1714E-01 1.4209E-01 8.5421E-01 8.4941E-01 

SD 2.4046E-02 3.9479E-01 8.2956E-02 1.4449E-01 

BS 5.2205E-01 9.4837E-01 9.3892E-01 8.5178E-01 

WS 4.6876E-01 8.2837E-02 7.3661E-01 5.4410E-01 

  

  

  

  

  

  

 

 

UF7 

  

  

  

  

AVG 8.6040E-01 4.2255E-01 6.5250E-01 7.9854E-01 

MDN 8.5256E-01 4.0710E-01 6.6287E-01 8.0661E-01 

SD 1.6666E-02 2.6991E-02 4.7455E-02 2.3511E-02 

BS 8.8357E-01 4.6050E-01 7.0474E-01 8.2244E-01 

WS 8.4506E-01 4.0005E-01 5.8990E-01 7.6657E-01 

            

 

 

UF8 

  

  

  

  

AVG 2.4020E+00 1.0252E+00 1.0918E+00 1.6236E+00 

MDN 2.4011E+00 1.0421E+00 9.4338E-01 1.5231E+00 

SD 3.2163E-02 5.3716E-02 2.1962E-01 3.0756E-01 

BS 2.4419E+00 1.0809E+00 1.4023E+00 2.0404E+00 

WS 2.3631E+00 9.5263E-01 9.2974E-01 1.3074E+00 
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4.3. Summary of IGD and HV Values for Test Function UF1 to UF8 

 

In this section, average IGDs and HVs are used to rank all algorithms. The use of 

average values for ranking provides the overall performance of the algorithms. It is the 

statistical measure that gives a clear indication of an algorithm’s convergence towards the 

Pareto solutions. It also provides details about the efficiency, spread coverage and diversity of 

an algorithm. Tables 7 and 8 provide the average IGD and HV values of all the algorithms used 

in this study.   

EMOGWO-ADTLF shows consistently high performance in IGD and HV values. It 

ranks first in both performance metrics with overall rank scores of 17 and 18 in terms of IGD 

and HV values respectively. For IGD values, NSGWO and DCMOGWO placed second and 

third positions with overall rank scores of 26 and 28. MMA is the worst performing algorithm.  

NSGWO and MOGWO are the second and third best algorithms for the HV values ranking. 

MMA again is the worst performing algorithm in the HV score ranking with MOALO and 

DCMOGWO placing fourth.  

In general, EMOGWO-ADTLF dominates both IGD and HV values. This shows that 

EMOGWO-ADLF has the best diversity, convergence and coverage among all the algorithms. 

The best diversity proves the ability of the algorithm to balance between exploitation and 

exploration in most of the functions. The variability of the other algorithms across the test 

function shows that their performances depend on the problem being analysed. The consistently 

low performance of MMA is a sign that it needs to be improved to be able to correctly 

approximate the Pareto fronts. 

 

Table 7. Ranking of IGD Values 

FUNCT-

ION 

EMOGWO

-ADTLF 

MOGW

O 

NSGW

O 

DCMOG

-WO 

MMA MOAL

O 

MODA 

UF1 1 3 4 2 7 6 5 

UF2 2 4 1 3 7 5 6 

UF3 3 5 6 4 7 2 1 

UF4 1 3 4 2 7 6 5 

UF5 1 3 7 4 5 2 6 

UF6 6 5 1 3 7 2 4 

UF7 1 5 2 3 7 6 4 

UF8 2 6 1 7 5 4 3 

TOTAL 17 34 26 28 52 33 34 

TOTAL 

RANK 

1 5 2 3 7 4 5 
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Table 8. Ranking of HV Values

FUNCT-

ION 

EMOGWO

-ADTFL 

MOGW

O 

NSGW

O 

DCMOG

-WO 

MMA MOAL

O 

MODA 

UF1 1 2 4 2 7 6 5 

UF2 1 3 2 7 6 4 5 

UF3 3 5 7 4 6 2 1 

UF4 1 3 4 2 7 6 5 

UF5 4 2 1 5 6 3 7 

UF6 6 5 1 3 7 2 4 

UF7 1 5 2 3 7 6 4 

UF8 1 6 2 7 5 4 3 

TOTAL 18 31 23 33 51 33 34 

TOTAL 

RANK 

1 3 2 4 7 4 6 

 

4.4. Wilcoxon Signed-Rank Test on Average IGD Values 

 

The Wilcoxon signed-rank test was employed to assess whether the optimization 

performance of EMOGWO-ADTLF is statistically different from other algorithms. The test 

was conducted at a significance level of 0.05. The data used for the test were obtained from 

Tables 3 and 5, and the outcomes are summarized in Table 7. In this table, R+ represents the 

sum of ranks for positive differences, and R− represents the sum of ranks for negative 

differences. The n/w/l/t column provides the following information: n is the total number of test 

functions considered, w is the number of functions where EMOGWO-ADTLF outperformed 

the compared algorithm, t is the number of functions where both algorithms exhibited 

equivalent performance, and l is the number of functions where EMOGWO-ADTLF 

underperformed the compared algorithm.  

The results of the test are presented in Table 9. The results reveal that the p-value for the 

comparison between EMOGWO-ADTLF and MMA is 0.00781, below the significance level 

of 0.05. This indicates that EMOGWO-ADTLF exhibits a statistically significant performance 

improvement compared to MMA across the test functions. On the other hand, the p-values for 

the comparisons with MOGWO, NSGWO, DCMOGWO, MOALO, and MODA are above the 

significance level of 0.05, suggesting that the differences in performance between EMOGWO-

ADTLF and these algorithms are not statistically significant. However, an examination of the 

n/w/l/t column reveals that EMOGWO-ADTLF outperformed MOGWO in 7 out of 8 functions, 

NSGWO in 5 out of 8 functions, DCMOGWO in 7 out of 8 functions, MOALO in 6 out of 8 

functions, and MODA in 6 out of 8 functions. These results demonstrate that while the 
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differences may not be statistically significant, EMOGWO-ADTLF exhibits superior 

optimization performance compared to these algorithms in most of the test functions. 

 

Table 9. Wilcoxon Signed-Ranked Test of IGD Values 

 Algorithms R+ R- p-value n/w/l/t Significant? 

EMOGWO-ADTLF vs MOGWO 30 6 0.1094 8/7/1/0 No 

EMOGWO-ADTLF vs NSGWO 26 10 0.3125 8/5/3/0 No 

EMOGWO-ADTLF vs DCMOGWO 29 7 0.1484 8/7/1/0 No 

EMOGWO-ADTLF vs MMA 36 0 0.00781 8/8/0/0 Yes 

EMOGWO-ADTLF vs MOALO 29 7 0.25 8/6/2/0 No 

EMOGWO-ADTLF vs MODA 23 13 0.5469 8/6/2/0 No 

 

4.5. Analysis of Algorithms Using Real-World Engineering Problems 

 

The test for diversity, convergence, and coverage of EMOGWO-ADTLF is 

determined in this section. The IGD and HV values are compared with three well known 

algorithms in Engineering applications namely MMA, MOALO and MODA. For each 

engineering problem, the Pareto front is determined by combining the obtained solutions from 

all algorithms into one dataset and performing non-dominated sorting, using Python package 

DEAP.  Tables 10 and 11 present the IGD and HV analysis for the Welded Beam and Disc 

Brake Engineering Designs respectively. 

For the IGD analysis, EMOGWO-ADLLF dominates in both design problems, 

obtaining the lowest overall average values. EMOGWO-ADTLF also obtains the best values 

in three statistical metrics for the HV analysis for both problems. EMOGWO-ADTLF shows 

high diversity, coverage and convergence for these engineering problems. The results suggest 

that EMOGWO-ADTLF can maintain a balance between exploration and exploitation in real-

world constrained Engineering problems. MMA shows an improvement in its performance in 

the unconstrained test functions. This indicates that MMA can be useful in engineering 

applications. 

 

Table 10. IGD Values of Engineering Problems 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 
MMA MODA MOALO 

Welded 

Beam 

Design 

AVG 3.7400E-03 4.1674E-03 4.0994E-03 3.8535E-03 

MDN 3.7936E-03 4.3654E-03 4.2613E-03 3.8507E-03 

SD 1.3111E-04 3.2143E-04 4.4301E-04 7.8066E-04 

BS 3.5594E-03 3.7140E-03 3.4943E-03 2.8988E-03 

WS 3.8669E-03 4.4227E-03 4.5426E-03 4.8110E-03 
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FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTLF 
MMA MODA MOALO 

Disc Brake 

Design 

AVG 1.8066E-03 1.8816E-03 2.0188E-03 1.8899E-03 

MDN 1.7089E-03 1.9505E-03 1.9902E-03 1.7166E-03 

SD 1.4200E-04 1.0507E-04 1.6469E-04 1.1086E-04 

BS 1.7034E-03 1.7331E-03 1.8329E-03 1.7087E-03 

WS 2.0074E-03 1.9611E-03 2.1032E-03 2.2445E-03 

 

Table 11. HV Values of Engineering Problems 

FUNCT-

ION 

STATI-

STICS 

EMOGWO-

ADTFL 
MMA MODA MOALO 

Welded 

Beam 

Design 

AVG 5.7618E-01 5.6272E-01 4.6346E-01 5.7011E-01 

MDN 5.7012E-01 5.6783E-01 4.6209E-01 5.6510E-01 

SD 4.5864E-02 8.5084E-03 7.7780E-03 7.8335E-03 

BS 6.3514E-01 5.6960E-01 4.7360E-01 5.8117E-01 

WS 5.2329E-01 5.5073E-01 4.5469E-01 5.6405E-01 

           

Disc 

Brake 

Design 

AVG 4.1770E+01 4.1309E+00 3.8351E+01 3.0851E+01 

MDN 4.1531E+01 4.1305E+00 3.8949E+01 3.0879E+01 

SD 7.5412E-01 1.6374E-02 9.1732E-01 8.2573E+00 

BS 4.2790E+01 4.1512E+00 3.9049E+01 4.0950E+01 

WS 4.0990E+01 4.1111E+00 3.7055E+01 2.0724E+01 

 

 

5. CONCLUSION  

 

 This study has developed an enhanced MOGWO using adaptive population parameter 

tuning and levy flight theories. It solves issues in multi-objective optimization including 

parameter tuning.  The analysis of IGD and HV values of EMOGWO-ADTLF across different 

test functions and engineering design problems shows its dominance over existing nature-

inspired algorithms. EMOGWO-ADTLF ranks first in both IGD and HV values when 

compared to MOGWO, NSGWO, DCMOGWO, MMA, MOALO and MODA. This 

demonstrates the ability of the proposed algorithm to correctly approximate the Pareto fronts 

and cover the objective space. This indicates that EMOGWO-ADTLF outperforms all other 

algorithms in terms of diversity, convergence, and coverage. Its superior diversity 

demonstrates the algorithm's capability to effectively balance exploration and exploitation.  

The work shows the potency of adaptive diversity approaches and Levy flight theories in 

developing robust algorithms for complex real-world problems. It offers a robust tool for 
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solving complex multi-objective problems with improved parameter tuning. Future Studies 

should concentrate on the scalability of the MOGWO algorithm. 
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