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Abstract: Jumping Spider Optimization (JSO) algorithm is a more recent meta-heuristic 

algorithm shown to outperform recent algorithms in the literature. This paper presents a JSO 

variant that modifies standard JSO in its global search and jumping on prey phases to 

improve further its global search capability. The proposed algorithm employs levy flight to 

update the position of global search agent for better performance. It also introduces a 

random number generator in the equation for the trajectory of the spider when jumping on 

prey to provide the updated agent with flexibility to attack prey. The enhanced jumping spider 

optimization algorithm (EJSO) is tested on 17 well-known benchmark functions and its 

performance compared with the standard JSO and five other well-known algorithms. The 

EJSO is also verified on a welded beam design problem to validate our algorithm. The results 

of statistical analyses conducted show the superiority of EJSO over the standard JSO and 

the other state-of-arts algorithms. 

 

 

 

1. INTRODUCTION 

 

 Several meta-heuristic algorithms have been developed to solve a variety of complex 

problems in a variety of domains, including data mining, engineering applications, energy, 

networks, medical, and other fields [1]. Meta-heuristics algorithms are flexible and 

straightforward because they mimic biological or physical phenomena by focusing solely on 

inputs and outputs [1]. Furthermore, because meta-heuristics are a type of stochastic 

optimization technique, they can effectively circumvent local optimum, usually encountered in 

real-world problems [2]. Meta-heuristic optimization algorithms outperform heuristic 

algorithms in various sophisticated and tricky optimization real-world problems due to the 

benefits of simplicity, flexibility, and the ability to avoid local optima [3]. The recent meta-
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heuristic algorithms include Coot Bird Algorithm (COOT) [4], Mexican Axolotl Optimization 

(MAO) [5],  Gradient-base Optimizer (GBO) [6], Hunger Game Search (HGS) [7], and Harris 

Hawks Optimization (HHO) [8].   

Researchers continue to develop new meta-heuristic algorithms because one algorithm 

is unable to obtain suitable results in all fields [9]. The jumping spider optimization algorithm 

(JSO), stirred by the tracking style of a jumping spider, is one of the recent additions to the 

existing meta-heuristic algorithms. It is shown to have the capability to solve real-world 

problems such as selective harmonics elimination problem  and ideal tuning of parameters of a 

proportional integral derivative (PID) controller [10].    

The optimization method presented in this paper aims at improving further the 

performance of the JSO. The modified version, named Enhanced Jumping Spider Optimization 

(EJSO) Algorithm, proves to improve the convergence rate, the efficiency in finding optimal 

solutions, stability and robustness of the standard JSO. The modification targets the global 

search and the jumping on prey phases of the JSO. The modified version introduces randomness 

(stochastics) into the algorithm to enable the spider agent to move in the search space efficiently 

and effectively to reach a good global optimization. 

The remaining of the paper is organised as follows: Section 2 explains the original JSO. 

Section 3 presents the modified JSO. Section 4 presents the various tests done to validate the 

performance of the algorithm. Results and discussion are presented in section 5. Section 6 

presents the conclusion. 

 

2. ORIGINAL JSO [8] 

 

 The JSO mimics the foraging characteristics of jumping spiders. The jumping spider 

mathematical modelling is presented in 3 stages: searching, persecution and jumping on its 

prey. A model is also given for the pheromone rate of the spider. 

 

2.1. Searching for prey 

 

 At start, the search agents are randomly generated to search for prey. In the searching 

for prey phase, the jumping spider undergoes a random search in the search space to find the 

exact position of a prey. The search is mathematically modelled in both local and global 

searches as depicted in Fig. 1. 

  

The local search is represented by (1): 

 

 𝑥⃗𝑖(𝑘 + 1) = 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) + 𝑤𝑎𝑙𝑘 (
1

2
− 𝜀)                                       (1) 

 𝑖 = 1, 2, 3, … , 𝑛.                  
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where 𝑥⃗𝑖(𝑘 + 1) is the updated location of the ith search agent,  𝑥⃗𝑏𝑒𝑠𝑡(𝑘) is previous iteration 

best agent, 𝑤𝑎𝑙𝑘 is a uniformly distributed pseudo-random number in the range [-2, 2] and 𝜀 is 

a normally distributed pseudo-random number in the range [0,1]. 

 

 

Fig. 1. Search phase 

 

The global search is described by (2): 

 

 𝑥⃗𝑖(𝑘 + 1) = 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) + (𝑥⃗𝑏𝑒𝑠𝑡(𝑘) − 𝑥⃗𝑤𝑜𝑟𝑠𝑡(𝑘))𝜆       (2) 

 𝑖 = 1,2,3 … … . . 𝑛.           

 

where 𝑥⃗𝑖(𝑘 + 1) is updated location of ith search agent, 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) and 𝑥⃗𝑤𝑜𝑟𝑠𝑡(𝑘) indicate best 

and worst search agents from previous iteration, 𝜆 is a Cauchy arbitrary figure with 𝜇=0 and  

𝜃=1.  

 

2.2. Persecution 

 

 During hunting, the spider may find itself not within a reachable distance to capture a 

prey. It will creep closer until it is within a good range to jump and capture the prey. The 

movement is represented by uniformly accelerated rectilinear motion given by (3). 

 

                             𝑥𝑖 =
1

2
𝑎𝑡2 + 𝑣𝑜𝑡                                                   (3) 
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where 𝑥𝑖 is the position of the ith spider chasing a prey, 𝑡 is time, and vo is the starting speed. 

Acceleration a can be expressed as 𝑎 =
𝑣

𝑡
, where 𝑣 = 𝑥 − 𝑥0. Each iteration is taken to be time 

with the difference from one iteration to the next being 1. The starting speed is usually made 

zero and (3) redefined as in (4): 

 

      𝑥⃗𝑖(𝑘 + 1) =
1

2
(𝑥⃗𝑖(𝑘) − 𝑥⃗𝑟(𝑘))                               (4) 

 

 where 𝑥⃗𝑖(𝑘 + 1) is the updated location of ith search agent, 𝑥⃗𝑖(𝑘) being the ith search agent in 

the previous iteration, with 𝑥⃗𝑟(𝑘) being the rth search agent arbitrarily picked from the previous 

iteration. The integer 𝑟 lies in the interval [1, n] where n is maximum number of search agents 

and it must not be equal to i. The persecution is depicted as shown in Fig. 2. 

 

Fig. 2. Representation of persecution 

 

2.3. Jumping on the prey 

 

 When the spider is within a jumping distance of the prey, it jumps on it. The jumping 

motion is considered to be a projectile motion shown in Fig. 3. 

 

 

Fig. 3. Jumping on prey 
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The equation of projectile motion can be expressed in terms of the vertical (Y-axis) and 

horizontal (X-axis) displacements of the particle. The displacement along the X-axis has 

uniform rectilinear motion, and the Y-axis has uniformly accelerated motion. Equations (5) and 

(6) represent X-axis and Y-axis displacements respectively. 

 

      𝑥⃗𝑖 = 𝑣𝑜 cos(𝛼)𝑡𝑖                                                                 (5) 

 

𝑦⃗ 𝑖 = (𝑣0 sin(𝛼)𝑡 −
1

2
𝑔𝑡2) 𝑗  ⃗⃗⃗⃗                                     (6) 

 

Eliminating the time t from (5) and (6), the equation of the trajectory of the projectile 

becomes 

𝑦 = 𝑥 tan(𝛼) −
𝑔𝑥2

2𝑉0
2𝑐𝑜𝑠2(𝛼)

                                                   (7) 

 

The trajectory in its final form is expressed as follows: 

 

𝑥⃗𝑖(𝑘 + 1) = 𝑥⃗𝑖(𝑘) tan(𝛼) −
𝑔𝑥⃗𝑖

2(𝑘)

2𝑉0
2𝑐𝑜𝑠2(𝛼)

                (8)

  

𝛼 =
𝜑𝜋

180
  

 

where 𝑥⃗𝑖(𝑘 + 1) is the new location of ith search agent, with 𝑥⃗𝑖(𝑘) being the current location 

of ith search agent. The projection speed vo is fixed as 100 mm/sec, g (acceleration due to 

gravity) =   9.80665 m/s2 and φ in degrees is randomly generated between 0 and 1. 

 

2.4. Pheromone Rates  

 

Jumping spiders produce pheromones. Pheromones are olfactorily noticed by other 

members of the same species and they cause behavioural changes. The rate of pheromones is 

modelled as follows: 

 

                                              𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒(𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛
                                   (9) 

 

Fitness(i) defines the present fitness value of the ith search agent, and Fitnessmax and 

Fitnessmin are the worst and the best fitness value in the current generation, respectively. The 

fitness value is normalized in the interval (0, 1) with 0 being the worst and 1 the best pheromone 

rate, respectively.  
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An unfit agent with low pheromone rate, less or equal to 0.3 is updated by a better fitted 

agent as follows: 

 

                      𝑥⃗𝑖(𝑘) = 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) +
1

2
(𝑥⃗𝑟1(𝑘) − (−1)𝜎 ∗ 𝑥⃗𝑟2(𝑘))                                  (10)                   

𝑟1 ≠ 𝑟2 

 

where 𝑥⃗𝑖(𝑘)  is the weak jumping spider search agent with low pheromone to be updated, 𝑟1 

and 𝑟2 are randomly generated integers in the interval [1, n], n is the maximum number of search 

agents, 𝑥⃗𝑟1(𝑘) and 𝑥⃗𝑟2 are the 𝑟1𝑡ℎ and 𝑟2𝑡ℎ search agents selected, 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) is the best search 

agent found from the previous iteration and 𝜎 is a randomly generated binary number in the 

interval [0,1]. 

 

3. THE PROPOSED JSO VARIANT 

 

The JSO variant is achieved by modifying the searching for prey and jumping on prey 

equations of the original JSO.  

 

3.1.  Modification of Searching for Prey Phase 

 

The global search of the standard JSO is represented mathematically by (2). The second 

term generates new solutions around the best solution using the difference between the best 

solution and worst solution times the Cauchy random variable with 𝜇= 0 and 𝜃=1. The modified 

JSO replaces this term with Lévy flight which has been successfully applied for global search 

in many metaheuristic algorithms [9]. The new equation is given by: 

 

                                      𝑥⃗𝑖(𝑘 + 1) = 𝑥⃗𝑏𝑒𝑠𝑡(𝑘) + 𝛾. 𝐿𝛼(𝑆)                                                          (11)                                                     

 

where 𝑥⃗𝑖(𝑘 + 1) is the new location of ith search agent, 𝛾 > 0 is the step size which relates to 

the scales of the problem and 𝐿𝛼(𝑆) provides a random walk whose random step length S is 

drawn from a Lévy distribution. The subscript 𝛼 determines the probability of obtaining Lévy 

random numbers in the tail of the Lévy distribution. The choice of 𝛼 significantly affects the 

search ability [11][12]. Its recommended value of 1.5 is used [12]. 

 

3.2. Jumping on Prey 

 

The path followed by the spider as it jumps on prey is represented by a projectile path. 

In the standard JSO, the path is varied by randomly varying the projection angle φ in degrees 

in the interval (0, 1). For small values of α, (7) can be rewritten as 

                                                       𝑦 = 𝑥 𝛼 −
𝑔𝑥2

2𝑉0
2                                                                       (12) 
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From (12), the variation of φ in this narrow range produces very little effect on the first 

term and negligible effect on the second term. Hence not enough randomness is provided for 

efficient local search. The modified JSO applies another random generator to each of the two 

terms for more efficient exploitation. The new update equation for jumping on prey is given by: 

 

 𝑥⃗𝑖(𝑘 + 1) = (𝑥⃗𝑖(𝑘) 𝑡𝑎𝑛(𝛼) −
𝑔𝑥⃗𝑖

2(𝑘)

2𝑉0
2𝑐𝑜𝑠2(𝛼)

) ∗ 𝜇                                   (13) 

 

𝛼 =
𝜑𝜋

180
  

 

where 𝑥⃗𝑖(𝑘 + 1) is the new position of ith search agent, 𝑥⃗𝑖(𝑘) is the current position of ith 

search agent and both φ and 𝜇  are randomly generated numbers in range (0, 1). 

The solution procedure of the EJSO is similar to the standard JSO except for the 

modified equations for the global search and the jumping trajectory. The steps taken are given 

in the flowchart shown in Fig. 4 [13]. 

 

Fig. 4. Flow chart of EJOA 
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4. TESTING 

 

This section presents the various computational experiments used to evaluate the 

performance of the proposed EJSO. The EJSO was tested on 17 standard benchmark 

optimization functions and welded beam design problem as an example of a real-world single 

objective bound constrained numerical optimization problem [8]. The results obtained were 

compared with the results of the standard JSO and five other recent state-of-the-art bioinspired 

algorithms from the literature. 

 

4.1. Benchmark Optimization Functions 

 

Details of the benchmark functions with varying levels of complexity are listed in Table 

1. Dim indicates the dimension of the function. 

 

Table 1. Benchmark functions 

FCN Function Name Search Range Dim Optimum 

Value 

F1 Sphere [-100, 100] 10 0 

F2 Schwefel 2.21 [-100, 100] 30 0 

F3 Rotated Hyper-

Ellipsoid 

[65.536,65.536] 2 0 

F4 Schwefel 2.22 [-100, 100] 30 0 

F5 Rosenbrock [-5, 10] 30 0 

F6 Step Function  [-5.12, 5.12] 30 0 

F7 Ackley [-1,1] 30 0 

F8 Beale [-4.5,4.5] 2 0 

F9 Happy cat [-2,2] 30 0 

F10 Matyas [-10, 10] 2 0 

F11 Powel [-1,1] 50 0 

F12 Salomon [-100, 100] 50 0 

F13 Colville [-10,10] 4 0 

F14 Griewank [-600,600] 30 0 

F15 Easom function [-5,10] 30 0 

F16 Sum of 

difference 

[-1,1] 2 0 

F17 Sum Square [-10,10] 50 0 
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The following parameters were used for all algorithms: 

Number of runs = 100 

Population of search agents = 100 

Maximum number of iterations = 500  

Three of the algorithms require additional parameters. The algorithms and their extra 

parameters are given in Table 2. 

 

Table 2. Additional parameter settings for MAO, GBO & HHO 

Algorithms Parameters Value 

 

MAO 

Crossover probability (cop) 

Damage probability (dp) 

Regeneration probability (rp) 

Tournament size (k) Lamba value (l) 

0.5 

0.5 

0.1 

2, 0.5 

GBO βmin, βmax 

pr 

0.2, 0.6 

0.5 

HHO Harris Hawk Number 

E0 variable changes from -1 to 1 (Default) 

30 

 

For each benchmark function, the optimum solution value, standard deviation, mean 

value and convergence curve were obtained for each of the seven algorithms.  

The quality of the mean values obtained by each algorithm in all the 17 functions was 

further statistically determined using the Mean Absolute Error (MAE) given by: 

 

                                                       
1

| |n

i

i iO
MAE

n

P

=

=
−

                                                         (14) 

 

where 𝑂𝑖 is the mean of the optimal values yielded by an algorithm for a test function Fi, 𝑃𝑖 is 

the function optimal value and n is the number of the test functions. 

 

4.2.Welded Beam Design Problem. 

 

The main objective of this problem is to minimize the cost of manufacturing and to 

obtain best possible construction cost for the following constraint variables [13]: thickness of 

weld (𝑥1), height (𝑥2), length (𝑥3) and bar thickness (𝑥4). The mathematical formulation is as 

follows: 

𝑥⃗ = [𝑥1 𝑥2 𝑥3 𝑥4] 

Minimize 𝑓(𝑥⃗) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2), 

Subject to 
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𝑔1(𝑥⃗) = 𝑥1 − 𝑥4 ≤ 0 

𝑔2(𝑥⃗) = 𝛿(𝑥⃗) − 𝛿max ≤ 0 

𝑔3(𝑥⃗) = 𝑃 ≤ 𝑃𝑐(𝑥⃗) 

𝑔4(𝑥⃗) = 𝜏𝑚𝑎𝑥 ≥ 𝜏(𝑥⃗) 

𝑔5(𝑥⃗) = 𝜎(𝑥⃗) − 𝜎𝑚𝑎𝑥 ≤ 0 

Having bounds: 

0.125 ≤ 𝑥1 ≤ 2
0.1 ≤ 𝑥2𝑥3 ≤ 10

 

0.1 ≤ 𝑥1, 𝑥4 ≤ 2 

Where, 

 

𝜏(𝑥⃗) = √(𝜏′)2 + (𝜏′′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅

𝜏′ =
𝑃

√2𝑥1𝑥2
, 𝜏′′ =

𝑀𝑅

𝐽
, 𝑀 = 𝑃(𝐿 +

𝑥2

2
)

𝑅 = √𝑥2
2

4
+ (

𝑥1+𝑥3

2
)

2

 

 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

12
+ 

𝑥1 + 𝑥3

2

  

]} 

𝜎(𝑥⃗) =
6𝑃𝐿

𝑥4𝑥3
3 

 
𝐿 = 14𝑖𝑛, P=6000lb, E=30.106 psi, 𝜎𝑚𝑎𝑥 = 30,000 𝑝𝑠𝑖,  

𝜏𝑚𝑎𝑥 = 13,600 𝑝𝑠𝑖, 𝛿max = 0.25𝑖𝑛. 

 

All experiments were carried out in MATLAB 2019a on a PC with Intel (R) Celeron 

(R) CPU N3050 @1.60GHz and a 4GB RAM memory on windows 10 OS. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1. Results for Benchmark Functions 

 

Comparison test results for the benchmark functions are presented in Tables 3 - 6.  The 

convergence curves of the seven algorithms are compared for each test function in Fig. 5. 

 

Table 3. Optimal Values. 

FCN EJSO JSO COOT GBO HGS HHO MAO 

F1 0.00x1000 3.96x10-152 1.57x10-64 8.17x10-199 0.00x1000 2.93x10-141 3.87x10-01 

F2 1.78x10-181 2.62x10-93 1.39x10-29 1.73x10-100 0.00x1000 3.44x10-72 7.06x10-02 

F3 0.00x1000 2.62x10-151 9.78x10-30 2.13x10-190 0.00x1000 2.77x10-118 1.33x10+00 

F4 8.87x10-179 5.57x10-94 5.46x10-29 2.68x10-99 0.00x1000 2.05x10-65 6.27x10-02 
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FCN EJSO JSO COOT GBO HGS HHO MAO 

F5 0.00x1000 1.97x10-31 1.76x10-14 0.00x1000 6.44x10-22 0.00x1000 4.34x10-01 

F6 0.00x1000 0.00x1000 5.91x10-27 0.00x1000 0.00x1000 1.18x10-10 3.93x10-01 

F7 -8.88x10-16 -8.88x10-16 6.22x10-15 -8.88x10-16 -8.88x10-16 -8.88x10-16 1.35x10+00 

F8 0.00x1000 0.00x1000 1.12x10-20 0.00x10+00 0.00x1000 0.00x1000 9.73x10-03 

F9 2.85x10-02 2.50x10-01 1.02x10-02 6.58x10-03 1.61x10-03 2.05x10-04 3.05x10-01 

F10 0.00x1000 2.05x10-150 8.26x10-67 1.96x10-176 0.00x1000 8.88x10-155 1.10x10-05 

F11 0.00x1000 0.00x1000 0.00x1000 0.00x1000 0.00x1000 0.00x1000 1.53x10-207 

F12 9.99x10-02 1.20x10-90 9.56x10-11 6.77x10-59 0.00x1000 3.00x10-54 1.50x10+01 

F13 0.00x1000 1.09x10-11 5.73x10-09 0.00x1000 3.62x10-06 1.69x10-07 1.49x10+01 

F14 0.00x1000 0.00x1000 0.00x1000 0.00x1000 0.00x1000 0.00x1000 1.83x10+00 

F15 6.46x10-191 2.19x10-144 6.73x10-48 3.24x10-156 0.00x1000 8.36x10-121 1.08x10+00 

F16 0.00x1000 3.86x10-164 1.09x10-43 2.95x10-226 6.07x10-260 1.20x10-140 4.20x10-05 

F17 6.46x10-191 2.74x10-148 2.49x10-45 3.48x10-151 0.00x1000 1.28x10-118 3.98x10+02 

 

Table 4. Mean Values. 

FNC 

NO. 

EJSO JSO COOT GBO HGS HHO MAO 

F1 8.42x10-06 1.07x10-02 1.58x10-01 1.15x10-02 2.34x10-02 9.48x10-03 1.79x10+02 

F2 2.81x10-04 7.32x10-04 4.62x10-03 1.22x10-03 1.71x10-03 5.80x10-04 1.39x10+00 

F3 1.62x10-05 1.42x10-02 9.96x10-02 1.87x10-02 2.82x10-02 1.39x10-02 2.15x10+02 

F4 1.78x10-04 7.28x10-03 1.57x10-02 9.88x10-03 1.41x10-02 4.90x10-03 5.25x10+00 

F5 2.52x10-03 1.30x10-01 2.94x10-01 1.00x10+00 1.74x10-01 9.29x10-02 5.34x10+04 

F6 8.95x10-06 6.47x10-03 1.34x10-01 1.10x10-02 1.37x10-02 6.81x10-03 1.76x10+02 

F7 7.74x10-04 2.03x10-02 4.66x10-02 1.49x10-02 2.57x10-02 1.09x10-02 5.45x10+00 

F8 2.93x10-02 1.75x10-03 1.50x10-03 5.35x10-04 1.78x10-03 1.75x10-03 9.00x10+01 

F9 4.34x10-02 2.91x10-01 1.47x10-01 4.46x10-02 2.87x10-02 1.28x10-02 5.67x10-01 

F10 3.39x10-07 3.44x10-05 3.35x10-04 2.09x10-05 3.68x10-05 1.78x10-05 1.26x10-01 

F11 3.03x10-154 8.39x10-135 2.49x10-160 3.80x10-202 3.37x10-135 3.36x10-135 2.24x10-18 

F12 1.04x10-01 7.28x10-02 4.94x10-01 1.08x10-01 1.40x10-01 1.25x10-01 2.32x10+01 

F13 4.24x10-01 1.77x10+00 1.58x10+00 6.02x10-01 2.13x10+00 1.57x10+00 2.73x10+03 

F14 9.99x10-05 3.66x10-02 7.18x10-02 3.01x10-02 5.15x10-02 4.44x10-02 1.05x10+01 

F15 3.46x10-03 4.78x10-02 1.07x10-01 2.10x10-02 1.58x10-01 6.44x10-02 1.45x10+01 

F16 5.20x10-06 1.46x10-07 2.51x10-06 1.15x10-07 2.40x10-07 4.24x10-08 1.44x10-02 

F17 3.46x10-03 1.77x10+01 3.95x10+01 7.80x10+00 5.79x10+01 2.38x10+01 5.34x10+03 

 

Table 5. Standard Deviation 

FNC N. EJSO JSO COOT GBO HGS HHO MAO 

F1 1.32x10-04 2.13x10-01 2.00x10+00 2.12x10-01 3.02x10-01 2.11x10-01 8.28x10+02 

F2 3.98x10-03 1.22x10-02 5.36x10-02 1.39x10-02 1.76x10-02 1.14x10-02 4.75x10+00 

F3 2.96x10-04 2.80x10-01 1.15x10+00 2.99x10-01 4.00x10-01 2.80x10-01 1.25x10+03 

F4 2.31x10-03 1.13x10-01 2.59x10-01 1.35x10-01 1.45x10-01 9.62x10-02 1.09x10+01 

F5 5.33x10-02 2.17x10+00 4.19x10+00 1.13x10+00 2.51x10+00 1.97x10+00 7.02x10+05 

F6 1.16x10-04 1.25x10-01 2.13x10+00 1.45x10-01 1.77x10-01 1.24x10-01 8.32x10+02 

F7 1.14x10-02 2.54x10-01 4.13x10-01 1.71x10-01 2.64x10-01 1.60x10-01 4.16x10+00 

F8 6.52x10-01 3.76x10-02 1.87x10-02 1.19x10-02 3.77x10-02 3.77x10-02 1.30x10+03 
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FNC N. EJSO JSO COOT GBO HGS HHO MAO 

F9 1.95x10-01 6.63x10-02 2.42x10-01 8.22x10-02 9.16x10-02 5.96x10-02 8.41x10-01 

F10 4.05x10-06 5.44x10-04 4.64x10-03 4.04x10-04 5.63x10-04 3.99x10-04 4.79x10-01 

F11 4.80x10-153 1.19x10-133 0.00x10+00 0.00x10+00 7.52x10-134 7.50x10-134 5.07x10-17 

F12 2.73x10-02 1.49x10+00 2.36x10+00 5.50x10-01 1.66x10+00 1.68x10+00 7.48x10+00 

F13 3.46x10+00 3.32x10+01 2.01x10+01 7.55x10+00 3.40x10+01 3.31x10+01 1.63x10+04 

F14 2.05x10-03 7.47x10-01 2.17x10-01 1.81x10-01 7.65x10-01 7.61x10-01 1.69x10+01 

F15 6.46x10-02 1.07x10+00 1.24x10+00 3.95x10-01 1.78x10+00 1.12x10+00 1.68x10+01 

F16 7.92x10-05 1.67x10-06 4.68x10-05 1.38x10-06 2.13x10-06 9.23x10-07 7.32x10-02 

F17 6.46x10-02 3.95x10+02 4.60x10+02 1.18x10+02 6.55x10+02 4.13x10+02 6.22x10+03 

 

Table 6. Ranking of algorithms using MAE values 

Algorithms MAE Rank 

EJSO 3.57x10-02 1 

GBO 0.515906 2 

JSO 1.187415 3 

HHO 1.515363 4 

COOT 2.508066854 5 

HGS 3.482911 6 

MAO 3655 7 
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F15 

Legend 

Fig. 5. Convergence Curves. 

 

The results in Table 3 show that the EJSO and the standard JOA were equally efficient 

in finding five optimal or near optimal solutions (F6, F7, F8, F11, F14) and EJSO was more 

efficient in finding eleven optimal or near optimal solutions (F1- F5, F9, F10, F13, F15 – 

F17). EJSO was less efficient only in F12. Compared to all other algorithms, it produced 

superior or equivalent results in eleven functions. It ranked second to only HGS which 

yielded superior or equivalent results in fourteen functions. 

The results in Tables 4 and 5 reveal that the average optimal or near optimal solutions 

and standard deviations yielded by the EJSO were better in fourteen functions compared to 

those of the standard JSO. Compared to all other algorithms, it produced the best average 

optimal or near optimal solutions in twelve of the benchmark functions and the least standard 

deviation in thirteen of them. Compared to the competitive HGS algorithm, the EJSO yielded 

better mean and standard deviations in fourteen functions. The results of the statistical analyses 

thus show the superiority of the EJSO over all the other algorithms.   

In the performance evaluation based on MAE, the EJSO ranked first as shown in Table 

6. This again confirms its superiority in terms of efficiency. 

From the convergence curves in Figure 6, EJSO is seen to converge better and faster in 

nine functions, namely F2, F5-F9, F11, F12, and F14, and second better in functions F1, F3, 

F4, F13, F15. However, its convergence in F10 was very poor. It is also noticed that the HGO 

presented a competitive convergence against the EJSO. Overall, the EJSO converged better 

than the other algorithms. 
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5.2. Results for Welded Beam Design 

 

Table 7 presents results obtained from solving the welded beam problem with EJSO and 

the six other algorithms. From the table, EJSO outperforms all the other six algorithms. 

However, the result produced by the standard JSO was very competitive.  

 

Table 8. Best cost for welded Beam 

Algorithm Optimal Values for constraint Variables Optimal 

Cost x1 x2 x3 x4 

EJSO 0.205729 3.470418 9.036613 0.205729 1.672485 

JSO 0.168168 4.514591 9.036623 0.205729 1.677014 

COOT 0.198085 3.484521 9.173125 0.399772 1.879285 

GBO 0.205729 3.470488 9.036623 0.205729 1.724852 

HGS 0.205721 3.470666 9.036627 0.205729 1.724863 

HHO 0.177143 4.309538 9.036930 0.205728 1.787066 

MAO 1.036525 4.075623 6.191996 1.164902 8.041845 

 

 

6. CONCLUSION 

 

This paper has presented an enhanced Jumping Spider algorithm. The modification was 

done on the Global search and the Jumping on prey phases of the standard algorithm. The 

algorithm was tested on 17 well-known benchmark functions and a real-world optimization 

problem and its performance compared with the standard JSO and five other well-known 

algorithms in the literature. The results showed an improved performance of the algorithm in 

terms of convergence rate, optimal solution values, stability and robustness over the standard 

JSO. It also provided superior statistical results when compared to the five other state-of-the-

art algorithms (COOT, GBO, HGS, HHO and MAO) from the literature. 
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