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Abstract: This paper presents a method based on wavelet analysis (WA) and Multilayer 

perceptron neural network (MLPNN) to predict transient stability status (TSS) after a 

disturbance. It uses as input data, generator terminal frequency deviations extracted at a 

rate of thirty-two samples per cycle. Only the first eight frequency deviation samples per 

machine are needed. The eight samples are sub-divided into two sets, one set consisting of 

the first four samples and the other set consisting of the last four samples. Each set of samples 

is decomposed into 2 levels using the Daubechies 8 mother wavelet and the absolute peak 

value of detail coefficients obtained. The absolute peaks of detail coefficients of the first 

sample sets of all generators are added and so are the absolute peaks of detail coefficients 

of the second sample sets. The two summed values are then used as inputs to a trained 

MLPNN which predicts the TSS. The method was evaluated using dynamic simulations 

carried out on the New England test system. The method was found to be accurate and can 

be implemented in real-world systems to provide system operators advance information on 

system stability, following disturbances, to aid the deployment of  needed emergency control 

measures. 

 

 

 

1. INTRODUCTION 

 

 Power grids are subjected to a wide range of abnormal conditions due to faults. Severe 

abnormal conditions can cause rotor angle separations that may also lead to out-of-step (OS) 

conditions between generators (groups or individual) or interlinked systems. OS conditions 

can cause torsional resonance and pulsating torques that are destructive to machine shafts [1]. 

When OS conditions arise, generator or system separation is needed to avoid flashovers, 
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damage to system equipment and wide-scale outages [2]. For example, in 2003, there were 

several major outages in USA, Canada and some European countries due to OS conditions 

[3]. Furthermore, in 2006, disturbances that occurred in the Union for the Co-ordination of 

Transmission of Electricity system caused it to uncontrollably separate into three islands [3]. 

A possible solution to OS problems is the use of schemes that analyse transient disturbances 

to determine critical clearing times, predict possible transient instability, and offer techniques 

for improvement of transient stability [4]. To this end, there is on-going research and a 

number of schemes for determining critical clearing times [5], detecting transient instability 

[2,6], predicting transient stability or otherwise [4], [7-12], and improving transient stability 

[13,14] have been put forth. These techniques have tackled the problem using various input 

parameters, signal processing and decision-making tools, with varying degrees of accuracy 

and easy of practical implementation.   

An OS scheme must operate on-line, act speedily and accurately. It must also be robust 

and simple to implement. All these desired features are yet to be completely addressed in a 

single scheme.  For example, the technique in [8] needs samples from ten to twelve different 

data types for each generator leading to a huge volume of required data for large systems 

which delays the technique’s response. That in [9] takes close to two and half seconds after 

fault clearance to decide on the stability or otherwise of a system. The methods in [10] and 

[11] employ templates that are pre-determined. Thus, system conditions other than those used 

to develop the templates will cause the techniques to maloperate. Furthermore, the method in 

[12] uses pre-determined stability boundaries for each machine and its application in a 

practical system with a large number of generators will require extensive simulation to realize 

those boundaries.   

To address the deficiencies in TSS prediction, this paper proposes a wavelet analysis 

and multilayer perceptron-based method. The scheme uses as input data, generator bus 

frequency deviations obtained after fault clearance. The frequency deviation samples are 

taken at a rate of thirty-two samples per cycle. Only the first eight samples of each machine 

bus frequency deviation are required. The eight samples are sub-divided into two sets, one set 

consisting of the first four samples and the other set consisting of the last four samples. Each 

set of samples is decomposed into 2 levels using the Daubechies 8 mother wavelet and the 

absolute peak value of detail coefficients obtained. The absolute peaks of detail coefficients 

of the first sample sets of all generators are added and so are the absolute peaks of detail 

coefficients of the second sample sets. The two summed values are then used as inputs to a 

trained MLPNN which predicts the stability status. The strengths of the proposed method are 

highlighted as follows: 

(a) The technique makes use of data sampled in a very short time window. 

(b) Minimal data is needed to train the  MLPNN decision tool used. 

(c) No predetermined templates are used.  

(d) The working of the technique does not require complex computations. 
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(e) It can detect instability status early to aid the maintainance of synchronism. 

The remaining sections of the paper are organized as follows: Section 2 explains the 

input parameter used while Section 3 describes the signal processing tool employed. In 

Section 4, the decision tool used is explained. Section 5 highlights the proposed technique. 

The study system used is described in Section 6. Results obtained and analysis done are 

captured in Section 7. Finally, conclusions drawn are elucidated in Section 8. 

 

 

2. FREQUENCY DEVIATION AS INPUT PARAMETER 

 

 Like rotor angles, machine bus frequencies swing during disturbances [8,15]. For a 

system that becomes stable, although the bus frequencies of all machines may initially 

increase or decrease, they will ultimately settle at a synchronous value. The rates of change 

of the bus frequencies are all reduced. Conversely, for a system that becomes unstable, 

frequency of one or more machines will rise or decay with higher amplitudes [15]. 

Figures 1 and 2 show plots of frequency deviations of the ten machines of the New 

England test system (described in section 6) obtained through dynamic simulation of a three-

phase line fault between buses sixteen and twenty-one. The simulation was done by means of 

the Power System Simulator for Engineers (PSS®E) software [16]. In fig. 1, the fault duration 

was 100 ms and the system was stable.  

 

Fig. 1. Frequency deviations for a stable system. 

 

On the other hand, when the fault duration was increased to 400 ms, the system became 

unstable as depictured in fig. 2. It is noted that in fig. 1, the bus frequencies initially increased 
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but later stabilized.  On the other hand, the bus frequencies of some of the generators in fig. 

2 grew progressively. The clear variations in the curves in the two figures illustrate the 

possibility of using the trajectories of bus frequencies to predict TSS [15]. However, the 

success or otherwise depends on the effectiveness of the methodology used for data 

processing. 

 

 

Fig. 2. Frequency deviations for an unstable system. 

 

 

3. WAVELET TRANSFORM  

 

 Wavelet transform (WT) is a commonly used tool for analyzing localized variations of 

variables. It decomposes a time series into time–frequency space, allowing the realization of 

the pronounced modes of variability and how they vary in time. In power system studies, the 

widely used form of wavelet transform is discrete wavelet transform (DWT). This is so because 

the time series in power systems are discrete [17-19]. DWT is done using mother wavelets.  

Daubechies 4 and Daubechies 8 mother wavelets are commonly used to analyze transients in 

power systems [17, 18]. This work used Daubechies 8 wavelet. The choice was informed by 

the superiority of Daubechies 8 wavelet. Daubechies 8 wavelet has the following advantages 

over Daubechies 4 [18, 19]: (a) It closely matches a signal to be processed, which is of utmost 

importance in wavelet applications. (b) Daubechies 8 wavelet is more localized, that is, it is 

compactly supported in time and is better suited for short and fast transient analysis compared 

to Daubechies 4 wavelet. (c) It provides almost perfect reconstruction. (d) Daubechies 8 wavelet 

is found to be more suitable in representing transient signals because it is smoother and more 

oscillatory in nature which is also the nature of transient signals. 

A l-level transformation of an input parameter like frequency deviations, ( )f x , can be 



Carpathian Journal of Electrical Engineering                        Volume 14, Number 1, 2020 

46 

done using (1) [17]: 

 

      1, 1, 1, 1,
0

l

l k l k l k l k
k l

f x a x d x    


    (1) 

 

where 0,1,2,...,l N ,  x ,  is a scaling function, and  x  is the mother wavelet. 

Approximate coefficients, nla ,1 , and detail coefficients, nld ,1  at scale 1l   can be 

obtained if coefficients at scale l are available using (2) and (3):  

 

   1, ,
2

l n l k
a a h k n

     (2) 

 

  1, , 2l n l kd a g k n     (3) 

 

where h and g are seen as filter coefficients of half band low-pass and high-pass filters 

respectively.  

Wavelet transformation of a variable gives rise to one approximate coefficient (this is 

constant) and two or more detail coefficients (this equals the levels decomposed). Valuable 

information is contained only in the detail coefficients. One such valuable information is the 

absolute peak value [17]. It is expected that, the absolute peak values of detail coefficients of 

machine terminal frequency deviations for stable swings will be much lower than those for 

unstable swings. This forms the basis of the proposed scheme. 

 

 

4. MULTILAYER PERCEPTRON NEURAL NETWORK  

 

Multilayer perceptron neural network (MLPNN) is a commonly used form of artificial 

neural networks which imitate the human brain. Other types of neural networks include radial 

basis function networks, Kohonen networks and recurrent networks [20]. Two commonly used 

neural networks are radial basis function neural network (RBFNN) and multilayer perceptron 

neural network (MLPNN) [20]. A comparative study of the performances of RBFNN and 

MLPNN in stability prediction shows that MLPNN performance better than RBFNN [21].  

MLPNNs can extract meaning from intricate or vague data and detect complicated 

trends [22, 23].  MLPNNs are composed of highly interconnected processing elements named 

neurons. A neuron may or may not have a bias. A bias has a fixed input value of 1. The output, 

Oj, of a neuron, j, with a bias, can be mathematical expressed as [15]: 

 

 
0

1

N

j j n nj j
n

O f x w w


  
  

   1,2,3,...,n N   (4) 
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where, j is the neuron number, nx  is input signal,  njw  is connection weight between nx  and 

neuron j, 0 jw is the bias weight, and jf  is the activation (transfer) function of neuron j.  

Linear (purelin), log-sigmoid (logsig), and hyperbolic tangent sigmoid (tansig) are 

widely used neuron activation functions [24]. The values of connecting weights are determined 

in the training phase using a training algorithm. MLPNNs are generally trained using the 

Levenberg-Marquardt back-propagation algorithm. The MLPNN is optimized by varying the 

number of layers as well as the number of neurons in the hidden layer(s) through a trial and 

error approach.  

The architecture of the MLPNN used, which is optimal, is shown in Fig. 3. It had two 

neurons in the input layer because the input data set has two distinct values. Also, one neuron 

was used in the output layer since only one state (that is stable or unstable) has to be determined. 

The hidden layer had three neurons. In Fig. 3, 1s and 2s  are the required inputs (explained in 

section 5). The neurons in the input and output layers had purelin transfer functions while those 

in the hidden layer had tansig transfer functions. Purelin and tansig functions are expressed as 

(5) and (6) respectively, 

 

  f x x  (5) 

 

  
2

2

1

1

x

x

e
f x

e





     (6) 

 

Letting ny be the output of neuron n, the final output ‘O’ of the MLPNN is 

mathematically determined as follows: 
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Fig. 3. Architecture of used MLPNN 

 

 

5. PROPOSED METHOD  

  

Figure 4 depicts a flowchart of the method proposed.  It is triggered when a line, bus, 

generator, or transformer is tripped. The method is outlined as follows: 

1. Capture the first eight samples of each generator’s bus frequency deviation at a rate of 

thirty-two samples each cycle and divide each eight samples equally into two sets 1

nf  and 

2

nf  as follows: 

  1

1 2 3 4, , , , 1,2,3,...,n n n n nf f f f f n N     (13) 

 

  2

5 6 7 8, , , , 1,2,3,...,n n n n nf f f f f n N     (14) 

 

where N is the number of system machines and superscripts 1 and 2 indicate first sample 

and second sample respectively. 

2. Decompose each set ( 1

nf and 2

nf )
 
into one approximate coefficient (a) and two detail 

coefficients (d1 and d2) using the Daubechies 8 (db8) mother wavelet. The useful outputs 

of 1

nf and 2

nf  after the transformation are mathematically represented as follows: 
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    1 1 1

1 2,n n ndwt f d d    (15) 

 

    2 2 2

1 2,n n ndwt f d d    (16) 

 

where 1 2,n nd d  are detail 1 and 2 coefficients respectively of machine n. It must be noted 

that each detail coefficient 1nd or 2nd is a set of numerical values. 

3. Extract the absolute peak value of each detail coefficient: 

 

  1 1

1 max 1n nd Max d                                             (17) 

 

  1 1

2 max 2n nd Max d                                            (18) 

 

  2 2

1 max 1n nd Max d
                                             

(19) 

 

  2 2

2 max 2n nd Max d    (20) 

 

4. Obtain the sum of absolute peaks of detail coefficients of each sample namely 1

nD and 2

nD  

1

nD and 2

nD  are given by: 

 

 
1 1 1

1 max 2 maxn n nD d d     (21) 

 

 
2 2 2

1 max 2 maxn n nD d d     (22) 

 

5. Sum 1

nD  values of all generators and 2

nD  values of all generators separately to obtain two 

composite values, 1S and 2S  respectively: 

 

 1 1

1

N

n
n

S D


     (23) 

 

 2 2

1

N

n
n

S D


     (24) 

6. Feed 1S  and 2S  values as inputs to the trained MLPNN to predict the TSS.  

The MLPNN was trained to output ‘0’ and ‘1’ for conditions leading to stability and 

instability respectively. The training was done using input-output data pairs.  
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MLPNNs like other networks rarely give outputs that are precisely ‘0’ or ‘1’. 

Consequently, in this method, (23) and (24) are utilized to achieve the desired output of ‘0’ or 

‘1’.  

 

 0.5 1O O      (25) 

 

 
0.5 0O O      (26) 

 

Start

Sample bus frequency deviations of each generator n.

Extract the two sets of samples fn
1 and  fn

2   of each 

sampled frequency deviation data.

Decompose each fn
1 and fn

2 sample into 2 levels using db8 

mother wavelet and extract the absolute peak of each 

detail coefficient.

Feed obtained sums as input to trained MLPNN.

   

 Is MLPNN output equal to 

zero?
Stable case

Yes

Unstable case

No

End End

Add absolute peaks of all fn
1 and also add absolute peaks 

of all  fn
2.

 

Fig. 4. Flowchart of method 

 

The performance of the proposed technique was evaluated using a mean absolute 

percentage error (MAPE) index. The index is given as follows: 

 

 100)()(
1

1
 


N
k

kOkT
N

MAPE                (27) 
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where )(kT is the target value of the MLPNN for test case number k, )(kO is the obtained output 

of the MLPNN and N is the total number of test cases. 

 

 

6. STUDY SYSTEM  

 

Testing of the method was done using the New England test system (also known as 

IEEE 39-bus system). It is a standard test system universally used for steady state and transient 

stability studies [4,10,11]. It is shown as fig. 5. It comprises ten generators, with one (G1) 

representing a large system.  

 

 

Fig. 5. IEEE 39-bus test system 

 

Simulations of the study system was done using the PSS®E software. A comprehensive 

model capturing the dynamics of prime mover and excitation system was employed. Numerous 

fault conditions were simulated by changing fault location, fault duration, system loading, 

network topology and generator availability. In all, one hundred and sixty faults were simulated. 

The simulations were done such that stability was maintained for fifty percent of the cases while 
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transient instability occurred for fifty percent of the cases. This was achieved by varying the 

fault duration. Frequency deviation data was obtained from the simulations for the development 

and testing of the proposed scheme. The percentages of data used for training and testing are 

5% and 95% respectively.  

 

 

7. RESULTS AND ANALYSIS  

 

Figure 6 shows the architecture of the MLPNN after training.  Results for two test cases 

(one stable case and one unstable case) are presented to demonstrate the scheme’s operation. 

The fault for both cases is a three-phase line fault between bus sixteen and bus twenty-one at 

base load. Waveforms for this condition have been shown in figures 1 and 2. The fault duration 

for which stability was maintained was 100 ms whiles that for which stability was lost was 400 

ms. The inputs 1S  and 2S  to the MLPNN are obtained as shown in Table 1 using (21), (22), 

(23) and (24). 
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Fig. 6. Architecture of trained MLPNN. 

 

Table 1. Sum of absolute peak values of detail coefficients 

 

Machine 

no. 

Stable Unstable 

1 310
n

D   
2 310

n
D   

1 310
n

D   
2 310

n
D   

1 0.02017 0.00630 0.03639 0.03633 
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Machine 

no. 

Stable Unstable 

1 310
n

D   
2 310

n
D   

1 310
n

D   
2 310

n
D   

2 0.03098 0.02607 0.07401 0.07335 

3 0.04181 0.03947 0.03945 0.03935 

4 0.04243 0.02744 0.03130 0.03055 

5 0.05960 0.07440 0.06423 0.04372 

6 0.04490 0.00764 0.03245 0.03348 

7 0.05897 0.00176 0.03508 0.03402 

8 0.04542 0.00145 0.05325 0.05514 

9 0.03219 0.02529 0.04886 0.04880 

10 0.01669 0.01706 0.09134 0.08944 

 
1 30.39316 10S    2 30.22688 10S    1 30.50636 10S    2 30.48418 10S    

 

Applying the above inputs to the MLPNN using (7)-(12), (25) and (26) yields the 

following results: 

Stable case: 

1 3 2 3( 0.39316 10 , 0.22688 10 ) 0O s s      , implying transient   stable. 

Unstable case:  

1 3 2 3( 0.50636 10 , 0.48418 10 ) 1O s s      , implying transient   unstable. 

A summary of results for other fault cases are shown in Table 2. Overall, the method 

accurately predicted the TSS of 143 out of the 152 test cases. The MAPE, after testing, was 

5.9%, which is low. The prediction accuracy of the scheme is thus 94.1%. 

 

Table 2. Test results for some fault cases 

 

Fault 

Stable Unstable 

1S  2S  O 1S  2S  O 

Bus11 0.2828 0.1047 0 1.0194 1.0007 1 

Bus14 0.2646 0.1048 0 0.9741 0.9356 1 

Bus28 0.1283 0.1297 0 0.4809 0.4800 1 

Bus11-Bus12 0.2634 0.1664 0 0.6569 0.6493 1 

Bus13-Bus14 0.2634 0.1664 0 0.4954 0.4736 1 

Bus16-Bus21 0.39316 0.22688 0 0.50636 0.48418 1 

 

The MLPNN produced these results having been trained with only 5% of total 

simulation data. This percentage of training data set is extremely low compared with  the 85% 

training data set used in [25]. The low percentage of training data set was realised because the 

used input data and the data processing approach employed, resulted in the processed data for 

transient stable cases being distinct from processed data relating to transient unstable cases. 
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Such distinctiveness of processed data makes is easy for the decision tool used (MLPNN) to 

distinguish between conditions that will lead to transient instabilty and those for which a system 

will remain stable. On the contrary, the use of large volumes of training data, such as was the 

case in [25], depict a difficulty of the decision tool to make out differences in data sets for stable 

and unstable conditions. The advantage of realisng a low volume of training data set in a 

technique is that, it becomes easy to deploy such a scheme in large real world systems. 

 

The proposed technique uses only one data variable (or component feature), which is generator 

frequency deviation. The data set required for processing and final decision making is also  

minimal. These avoid potential processing delays associated with large data variables and 

datasets.  The lower the volume of data to be processed, the faster the processing. Furthermore, 

the approach to data processing and final decision is simple and will not present any 

computational delays. Consequently, the proposed technique will offer a quick response to 

provide system operators or emergency control softwares ample time to deploy the needed 

control measures. 

 

Frequency deviation data can be captured by phasor measurement units which have seen 

increasing deployment in power systems, in recent times. Phasor measurement units are capable 

of capturing frequency data in real-time. Aided by phasor data concentrators (PDCs) and super 

phasor data concentrators (super PDCs), which are all integral parts of Wide Area Monitoring 

Systems (WAMS), frequency deviation data from generator buses can be collected at a control 

center for processing by the proposed technique, for utilization by system operators and the 

activation of emergency control softwares. 

 

 

8. CONCLUSION  

 

A method for predicting TSS has been presented. It employs bus frequency deviations as 

input data, wavelet analysis for signal processing and MLPNN for final decision making. The 

input data can be obtained from phasor measurement units (PMUs) which have seen active 

deployment in power systems. A low volume of input data, captured in a short time window, is 

required. Minimal training data is needed to train the decision tool. This will allow for easy 

application in large real-world systems. The method does not use any predetermined templates 

or stability boundaries that could adversely affect its application in real world systems. It can 

be easily implemented on-line aided by phasor measurement units capable of capturing real-

time frequency data and transmitting them to a centralized point. The analytical and decision-

making tools employed are also simple, reliable, and easy to implement. Also, the short time 

window (1/4 of a cycle) of input data capture will make the scheme respond speedily. 
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Consequently, systems operators will have ample notice to deploy the needed emergency 

control measures. The simulation results indicate that the proposed method has high accuracy. 
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