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Abstract: This paper presents a simple and effective technique for real-time prediction of 

transient stability status following a large disturbance and compares the performance of 

three artificial intelligence (AI) techniques commonly employed as decision making tools. 

The (AI) techniques compared are support vector machine (SVM), multilayer perceptron 

neural network (MLPNN), and radial basis function neural network (RBFNN). The stability 

status prediction scheme samples rotor angles of all system generators and extracts the 

absolute value of the first sampled rotor angle value of each generator. The extracted 

absolute rotor angle value of all generators are summed and fed as input to a decision tool. 

The scheme was tested using simulations carried out on the IEEE 39-bus test system. One 

hundred percent prediction accuracy was obtained when SVM and MLPNN were each 

employed as decision tools. The use of the RBFNN as decision tool resulted in only sixty-

three percent prediction accuracy. 

 

 

 

1. INTRODUCTION 

 

Large disturbances such as faults on transmission lines endanger stability of power 

systems and can lead to wide-scale system outages. This is particularly so when protection 

schemes are not able to effectively respond to fault conditions. For example, the August 14, 

2003 blackouts that occurred in United States and Canada were mainly due to the combined 

effect of large disturbances and ineffective system protection [1]. 
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Power system faults pose the greatest threat to the maintenance of stability. Severe 

disturbances could cause large separation of the rotor angles between generators or groups of 

generators leading to eventual loss of synchronism [2]. The post-disturbance stability status of 

a system depends on the pre-disturbance system operating condition, the form of disturbance, 

and the post-disturbance network configuration [3]. Special protective systems (SPSs) which 

are event based control systems have been developed to address transient instability. SPSs 

activate controls in response to occurrence of some pre-identified set of disturbances. They 

are however complicated and expensive; any modifications to the power system requires 

alteration of their control logic [4]. 

Researchers have therefore come up with a number of techniques for early detection 

and prediction of transient instability [2], [4]-[12]. These techniques hinge on the combined 

ability of phasor measurement units (PMUs) and global positioning system (GPS) to provide 

real-time capture and transmission of power system data to a centralized location.  

Critical issues in transient stability prediction include (i) ease of input data capture, (ii) 

simplicity, speed and accuracy of input data processing, and (iii) accuracy of final decision 

making.  

The input data used should allow for easy capture and transmission, in real-time, to a 

centralized point. This should also be done in a short-time window. Rotor angle [5], speed 

deviation [2], and bus voltage [4] are some of the input parameters that have been used. Using 

single input data type for each machine or bus is desired. Capturing multiple input data types 

presents implementation challenges. For example, the work presented in [6] uses 34 input 

features derived from generator electromagnetic powers, rotor angles and speeds, bus voltages 

and transmission line power flows, among others. Also, in [7], 10-12 input data samples per 

generator are required, and in [8], 4 inputs per generator are required. These data requirements 

will make the volume of data required for large systems huge. Also, the technique presented 

in [5] uses data captured in a rather long time-window of 120ms.   

The processing of input data should be simple, fast and accurate. Significant success 

has been chalked in this area; but there is still room for improvement. For example, in [4], 

extensive dynamic simulations are required to establish the stability boundaries of each 

generator.  

The use of pre-determined templates in decision making such as in [4], [9] and [10] is 

not helpful, considering the fact that changes in system topology may render such templates 

ineffective. Also, the technique in [11] requires a long period of up to 2.5 seconds after fault 

clearance to make a decision as to whether or not a system will be stable. Thus, there is the 

need for an improved transient stability status detection or prediction scheme. 

Support vector machine (SVM), multilayer perceptron neural network (MLPNN) and 

Radial basis function neural network (RBFNN) are artificial intelligence (AI) techniques 

commonly used for decision making in power system studies. However, their performance in 

the prediction of transient stability status has not been compared. It is important to highlight 
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that there is an erroneous perception on the part of some researchers about AI techniques. 

Some researchers perceive them as black-box type decision making tools [4]. Contrary to this 

perception, AI techniques are based on sound mathematical principles. Their decisions 

(outputs) are mathematically determined from given inputs. This has been demonstrated in 

this paper. 

This paper proposes an improved scheme to predict transient stability or otherwise and 

also compares the performance of the aforementioned AI tools. The scheme uses generator 

rotor angles as input data. The rotor angles are sampled at a rate of 60 samples per second. 

This sampling rate is practically feasible in the capture of rotor angles [13]. Also, phasor 

measurement units do operate at this sampling rate [14]. Only the first sampled rotor angle 

value of each generator is required by the scheme. For each sampled rotor angle value, the 

absolute value is extracted. The extracted absolute rotor angle values (one for each generator) 

are then summed. The summed value is then fed into one of the decision making tools which 

predicts the stability status.  

Compared to schemes existing in literature, the proposed technique uses single input 

data for each generator, captured in a shorter time window (1/60th of a second), requires 

minimal training data (less than 2% of data generated), uses minimal input data (number of 

inputs equals number of generators), does not require predetermined templates, and its 

implementation does not require complex computations.  

The rest of the paper is organized as follows: Section 2 discusses the use of rotor angle 

as input parameter. Section 3 discusses SVM, MLPNN and RBFNN. Section 4 presents the 

proposed scheme while Section 5 highlights the test system used and simulations done. Results 

obtained are presented and discussed in Section 6. Conclusions drawn are highlighted in Section 7. 

 

 

2. USE OF ROTOR ANGLE AS INPUT PARAMETER 

 

Rotor angle has been extensively used as power system input parameter for various 

studies. Rotor angle is a key parameter in the fundamental equation governing generator rotor 

dynamics [15]. The equation is given as [15]:  

 

 em PP
dt

δd
M 

2

2

 (1) 

 

where M is the inertia coefficient,  is the rotor angle, mP is the mechanical power and eP  is 

the electrical power. It can also be shown that [2],   

 

 
2
1

0

0








 δ
δ a δdP

H

ω

dt

δd
 (2) 



Carpathian Journal of Electrical Engineering           Volume 12, Number 1, 2018 

25 

where H is the inertia constant and aP  is the difference between input mechanical power and 

output electromagnetic power. For stability to be attained after a disturbance, it is expected 

that 
dt

d  will be zero in the first swing [15]. This condition gives rise to the equal area 

criterion which is a well-known classical transient stability criterion.  

Rotor angles are normally expressed relative to a common reference. This reference 

cannot be based on a single generator, since any instability in the reference generator makes 

the relative angles meaningless. In order to overcome this difficulty, the concept of system 

centre of inertia (COI) angle is used to obtain a reference angle [9].  

Many researchers discourage the use of rotor angles in algorithms [9]. This is because 

the COI values, in practice, require continuous updates using real time measurements. This 

requires extra pre-processing and has significant errors. However, recent work by engineers 

from Schweitzer Engineering Laboratories, Inc. and San Diego Gas & Electric point to a 

breakthrough in capturing rotor angle data [13]. The researchers [13] have successfully 

installed and commissioned a rotor angle measurement system on the generators in a 740 

MVA combined cycle plant. No reference angle value is required in the measurement. This 

has offered a tremendous boost to the continuing use of rotor angles as input parameter for 

power system studies. This significant success motivated the use of rotor angle as input 

parameter in this work. 

 

 

3. DECISION MAKING TOOLS 

 

3.1. Support Vector Machine 

 

Support vector machine (SVM) is an extremely powerful machine learning algorithm 

that focuses on classifying data [16], [17]. SVMs are inherently two-class classifiers. The 

main idea of a support vector machine is to construct a hyperplane as the decision surface in 

such a way that the margin of separation between two data categories is maximized. SVMs 

can be used when the data to be classified has two classes. They separate the data into two 

categories, namely positive (+1) and negative (-1).  

SVMs can provide good generalization performance on pattern classification problems 

despite the fact that they do not incorporate problem-domain knowledge. This attribute is 

unique to SVMs [17]. In addition to using separating hyperplanes, SVMs use support vectors 

to aid in data classification. Support vectors are points that are closest to the separating 

hyperplane; these points are on the boundary of the slab [16]. The building of a support vector 

machine hinges on the following two mathematical operations: (a) nonlinear mapping of an 

input vector into a high-dimensional feature space that is hidden from both the input and the 
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output, and (b) construction of an optimal hyperplane for separating the features discovered in 

(a) [17]. 

Figure 1 illustrates these definitions, with + indicating data points of type 1, and – 

indicating data points of type –1 [18]. 

 

 

Fig. 1. Data points of SVM 

 

 Figure 2 shows the general architecture of an SVM [17]. The input layer consists of 

the input signal vector. In the hidden layer, an inner-product kernel is computed between the 

input signal vector (x) and support vector (si). The linear outputs of the hidden layer neurons 

are summed in the output neuron. The output neuron has a bias.  
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Fig. 2: General architecture of support vector machine 

 

The interim output, O of a support vector machine can be computed as [18]: 

 

 𝑂 = ∑ 𝐰𝑖𝑖 𝑘(𝐱, 𝒔𝑖) + 𝑏  (3) 
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where x is the input vector, si is the support vector, b is the bias, and wi is the weight vector. 

The function k(x, si) is a kernel of x and si. The weight and bias values are obtained in the 

training phase. A linear kernel, meaning dot product, was used in this work. The linear kernel 

was selected because the classification required is a two-class one. Other possible kernel 

functions are quadratic, polynomial, Gaussian or radial basis function, and multilayer 

perceptron [18]. 

SVMs are trained with input-output pairs to give targets of either +1 or -1. An output 

of 1 is given when 0O  while -1 is recorded when 0O . In this work, the SVM was trained to 

produce a target of +1 for a condition that will lead to transient stability and -1 for a condition 

that will lead to transient instability. In other words, stability status, t, from SVM output, O is 

obtained as follows: 

 

 stableissystemtO  10  (4) 

 

 unstableissystemtO  10  (5) 

 

The training was done using the sequential minimal optimisation method [16].  

 

3.2. Multilayer perceptron and Radial basis function neural networks 

 

Artificial Neural Networks (ANNs) mimic the human brain and have remarkable 

ability to derive meaning from complicated or imprecise data. They can be used to extract 

patterns and detect trends that are too complex to be noticed by humans or other computer 

techniques [19]. Two commonly used neural networks are radial basis function (RBF) and 

multilayer perceptron (MLP) neural networks [20], [21].  

 

3.2.1. Multilayer perceptron neural network 

Multilayer perceptron neural network is one of the artificial neural networks that have 

gained wide application in power system studies [22], [5]. It can be used to extract patterns 

and detect trends that are too complex to be noticed by humans or other computer techniques 

[22], [5].  Typically, the MLPNN is organized as a set of interconnected layers of artificial 

neurons, namely input, hidden and output layers. When a neural group is provided with data 

through the input layer, the neurons in this first layer propagate the weighted data and 

randomly selected bias, through the hidden layers. Once the net sum at a hidden node is 

determined, an output response is provided at the node using a transfer (activation) function. 

Commonly used transfer functions are: linear, log-sigmoid and hyperbolic tangent sigmoid 

[23], [24]. MLPNN, like any other neural network, has to be trained [23]. In this work, the 

MLPNN was trained using the Levenberg–Marquardt algorithm [25]. 
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The MLPNN used in this work has the architecture shown in Fig. 3. 
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Fig. 3: Architecture of used MLPNN 

 

where x is the input data, ijw  is the weight between neurons i and j, 0iw is the weight of the 

bias of neuron i, and O is the output of the neural network. Biases have fixed input values of 

1. The input neuron has linear transfer functions while the hidden layer and output neurons 

have tangent sigmoid transfer functions. The output O of the MLPNN is determined as 

follows: 

  The output, 1y , of neuron 1 is given by: 

 

   101110111 wxwwxwfy   (6) 

 

 The output, 2y , of neuron 2 is given by: 
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The output, 3y , of neuron 3 is given by: 
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The output,O , of MLPNN is thus given by: 
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The MLPNN was trained to give an output of 0 if a disturbance will lead to transient 

stability, and an output of 1 if a disturbance will result in transient instability.  

In practice, neural networks do not always give exact outputs of 0 or 1. For example, 

an expected output of 0  may be presented as 0.017 while a value of say 0.819 may be 

obtained instead of 1. As a result, in this work, (10) and (11) are used to round the output of 

the MLPNN to either 0 or 1.  

15.0  OO                                    (10) 

05.0  OO                                  (11) 

 

3.2.2. Radial basis function neural network 

Radial basis function neural network (RBFNN) is also an extremely powerful neural 

network [26]. It is a two-layered neural network having an input (or hidden) layer and output 

layer. The neurons in the input layer have Gaussian transfer function while those in the output 

layer have linear transfer function. The number of neurons in the output layer is 

predetermined by the user. The number of input neurons is however determined in the 

training process. Fig. 4 shows the architecture of a RBFNN with one input and one output.  
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Fig. 4: Architecture of RBFNN 

 

The output iY of a radial basis neuron i in the input (or hidden) layer can be obtained as 

[26]: 

  0. iii wxwRY   (12) 
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where x is the input vector (signal), iw  is the weight vector of radial neuron i, xwi . is the 

Euclidean distance between the two vectors, 0iw is the bias weight of neuron i, and R  is a 

Gaussian function. In MATLAB, R is given as [27]: 

 

  
2nenR   (13) 

 

The output jO of neuron j in the output layer is given as: 

 

 0jijij wwYO   (14) 

 

where ijw is the weight of the connection between neuron i in the input layer and neuron j in 

the output layer, and 0jw  is the bias weight of neuron j. The RBFNN was trained to give an 

output of 0 if a disturbance will lead to transient stability, and an output of 1 if a disturbance 

will result in transient instability.  

 

 

4. PROPOSED TRANSIENT STABILITY STATUS PREDICTION SCHEME 

 

Figure 5 shows a functional block diagram of the proposed technique. The scheme is 

activated upon a large disturbance such as the tripping of a loaded line, generator or 

transformer and operates by sampling the rotor angle of each generator in the system using a 

sampling rate of 60 samples per second. It then extracts only the first sample of each 

generator. The absolute value of each extracted sample is then obtained. The obtained 

absolute values are then summed and used as input to a trained decision-making tool (which 

is either SVM, MLPNN or RBFNN). The decision-making tool then outputs the predicted 

transient stability status of the system. 
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Fig. 5: Functional block diagram of the proposed technique 
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The operating procedure is further outlined as follows: 

 For every generator i, sample the rotor angle and extract only the first rotor angle 

sample, 𝛿𝑖:  

 1,ii   N,...,,i 21  (15) 

 

where N is the number of generators of the system 

 For each extracted rotor angle sample, obtain the absolute value i . 

 Obtain the input, x,  to the decision making tool (MLPNN, RBFNN or SVM) by 

summing the absolute values as follows: 

 


N

i
iδx

1

, Ni ,...,2,1  (16)
 

 

 

5. TEST SYSTEM USED 

 

The IEEE 39-bus test system was used to test the proposed scheme. It is shown in Fig. 

6.  

 

Fig. 6: IEEE 39-bus test system 
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This test system, also known as the New England test system, is a very popular test 

system for transient stability studies. Several researchers have used it for their work [4], [9], 

[10] for these main reasons: it is a model of a practical system; and it can be modeled and 

simulated using several non-commercial versions of simulation tools. The system consists of 

10 generators, one of which is a generator representing a large system. Data for its model was 

obtained from [28], [29].  

Transient stability analysis of the test system was performed using the PSS®E 

software. A detailed dynamic model which includes prime mover and excitation system 

dynamics was used. Several fault simulations were obtained by varying the fault location, 

fault duration, system loading, network topology, and generator availability. 

About fault location, bus and line faults at different locations were simulated. Fault 

durations were also varied by starting with short durations which resulted in transient stability 

and extending them gradually until instability occurred. The effect of shutting down a 

generator due to low loading conditions or for purposes of maintenance was also considered. 

For example, for a loading level of 80% base load, generator 2 (G2) was removed from circuit 

before disturbances were applied. Additionally, the effect of changes in network topology was 

investigated by considering N-1 contingency.  For example, for some of the simulations, the 

line between bus 25 and bus 26 was removed before the application of faults.  

A total of 210 fault simulations were done to obtain 105 cases of transient stability and 

105 cases of transient instability. The following criterion was used to determine the stability 

status of the system following a simulated disturbance: A system was seen as being 

transiently unstable if the rotor angle difference between any two generators exceeded 180 

degrees within a typical study period of 3 seconds following fault clearance, otherwise, the 

system was seen to be stable [3].  

Sampling of rotor angles was done allowing for a trigger delay time of 2 ms after fault 

clearance. The sampling and analysis of data were done using the MATLAB software. 

 

 

6. RESULTS OBTAINED 

 

6.1. Rotor angle trajectories 

 

Two representative cases are presented here to show rotor angle trajectories obtained 

for the simulated cases. Figure 7 shows time responses of rotor angles for a case of transient 

stability. The fault was applied on the line between buses 13 and 14 of the test system at 

110% base loading. The fault was applied at st 1.0 and the line tripped at st 2.0 . Figure 8 

shows time responses of rotor angles for an unstable case. The system and fault conditions 

were the same as those for the stable case except that the fault duration was extended by 0.2 

seconds to make the system transiently unstable. Table 1 shows absolute values of sampled 
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rotor angles for each machine for the two fault cases. 

The input to decision making tool using (16) is obtained as follows: 

  1633.103stablex  

  2648.350unstablex  

 

 

Fig. 7: Rotor angle trajectories for a stable condition 

 

 

Fig. 8: Rotor angle trajectories for an unstable condition 
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Table 1: Absolute values of sampled rotor angles 

 

Generator 

Absolute values of rotor 

angles (degrees) 

Stable Unstable 

1 23.9276 49.0633 

2 22.2254 85.5155 

3 18.3866 96.6407 

4 0.8698 12.5067 

5 3.6542 18.5483 

6 8.4008 2.2257 

7 1.0094 13.7294 

8 2.7970 20.8451 

9 2.9092 16.0681 

10 18.9833 35.1220 

 

6.2. Support vector machine (SVM) 

 

6.2.1. Training 

Rotor angle data from two cases of transient stability, and two cases of transient 

instability, representing 1.90% of data generated, were used to train the SVM.  The remaining 

98.10% of the data generated (103 cases of instability and another 103 cases of stability) were 

then used to test the proposed scheme. The training data of 1.90% is very low when compared 

with the training data of 75% used for some stability status prediction schemes existing in 

literature [9].  

 

6.2.2. Structure of SVM 

The characteristic data of the SVM after training is presented below: 

Support vector, 









7435.167

1524.145
is  

Weight vector, 











0039.0

0039.0
iw  

      Bias, 8504.13b   

 

For the above SVM structure, the interim output, O given by (3) becomes 

 

       
  bwswsxxO  2211)(    

                          
 

8504.13
0039.07435.1670039.01524.145


 x

        

                           8504.1308811.0  x                                 (17) 
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6.2.3. Performance 

The prediction accuracy of the scheme using SVM as decision making tool was found 

to be 100%. A sample calculation of the SVM output is presented using input value, x, 

obtained from Table 1. 

Transient stable case 

Interim output, O, of SVM using (17) is obtained as: 

 

  8504.131633.10308811.01633.103 xO  

                          7607.4          (18) 

 

Stability status, t, using (4) is +1 which means transient stable. 

 

Transient unstable case 

Interim output, O, of SVM using (17) is obtained as: 

 

  8504.132648.35008811.02648.350 xO  

                             0114.17         (19) 

 

Stability status, t, using (5) is -1 which means transient unstable. 

 

6.3. Multilayer perceptron neural network (MLPNN) 

 

6.3.1. Training 

Initially, the MLPNN was trained with the same data used to train the SVM. However, 

this did not yield satisfactory test results. Desired performance was achieved only after 

training with higher volume of training data; which is 4.76% of total generated data.  

 

6.3.2. Architecture of MLPNN 

The MLPNN had three layers (as shown in fig. 3). The input layer had one neuron 

with a linear transfer function while the hidden layer had 2 neurons with tangent sigmoid 

transfer functions. The output layer had one neuron, also with a tangent sigmoid transfer 

function. The characteristic data is presented in Table 2. 

 

Table 2: Weight values of MLPNN 

Input signal – 

Input layer 

Input layer –  

Hidden layer 

Hidden layer –  

output 

882.411 w  892.512 w  864.624 w  
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7.210 w  

 

7856.213 w  

8567.320 w  

829.230 w  

25914.034 w  

32231.040 w  

 

6.3.3 Performance 

Applying (6) to (9), the MLPNN outputs are obtained as follows: 

 

Transient stable case 

   0000012.01663.103 xO  (20) 

 

Using (11), O is 0 which means transient stable. 

 

Transient unstable case 

   12648.350 xO  (21) 

 

This means that the system will be transient unstable. 

 

6.4. Radial basis function neural network (RBFNN) 

 

The RBFNN was also initially trained with the same input data used to train the SVM. 

However, this did not yield satisfactory performance. The highest performance of 63% 

prediction accuracy was obtained only after increasing the volume of training data samples to 

9.05% of total data. Beyond this, it was observed that the prediction accuracy remained the 

same. Thus, the RBFNN offered poor performance. 

 

 

7. CONCLUSION 

 

A novel technique for real-time prediction of transient stability status has been 

presented. The technique does not require any large volume of input data. The data processing 

approach is also simple. Its operation is also fast considerating the fact that it requires 

minimal input data captured in a very short time window. It can also be easily implemented. 

The performance of three artificial intelligence decision making tools namely support vector 

machine, multilayer perceptron neural network, and radial basis function neural network have 

also been evaluated. The support vector machine has been found to be most effective 

followed by the multilayer perceptron neural network. The radial basis function neural 

network gave the least performance.  
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