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Abstract: In this paper, Improved Moth-Flame Optimization (IMFO) algorithm has been 

proposed for solving Reactive power problem. Navigation method of moths in nature called 

transverse orientation is the key inspiration of the moth-flame algorithm (MFO). By 

maintaining a fixed angle with respect to the moon, Moths fly in the night and it’s an effective 

mechanism for moths travelling in a straight line for long distances. Due to very slow 

convergence and poor precision, an improved version of MFO algorithm based on Levy-

flight strategy has been proposed to solve the reactive power problem. The diversity of the 

population can be increased by Levy-flight to overcome premature convergence in order to 

reach the global optimal solution. This methodology improves the trade-off between 

exploration and exploitation ability of moth-flame algorithm (MFO).The proposed Improved 

Moth-Flame Optimization (IMFO) algorithm has been tested in standard IEEE 30,57,118 

bus test systems and simulation results show clearly about the better performance of the 

proposed algorithm in reducing the real power loss with control variables within the limits. 

 

 

 

1. INTRODUCTION 

 

To till date various methodologies has been applied to solve the Optimal Reactive Power 

problem. Many types of mathematical methodologies like linear programming, gradient method 

(Alsac et al., 1973; Lee et al., 1985; Monticelli et al., 1987; Deeb et al., 1990; Hobson, 1980; 

Lee et al., 1993; Mangoli et al., 1993; Canizares et al., 1996) [1-8] has been utilized to solve the 

reactive power problem, but those techniques found difficult in handling the constraints in the 

reactive power problem.. After that various types of evolutionary algorithms (Berizzi et al., 

2012; Roy et al., 2012; Hu et al., 2010; Eleftherios et al., 2010) [9-12] has been applied to solve 
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the reactive power problem. But some algorithm good in exploration means, it lacks in 

exploitation and few algorithm’s good in exploitation but lack in exploration. Speed of 

convergence is poor for some algorithms even though they got good trade-off between 

exploration and exploitation. In this paper, Improved Moth-Flame Optimization (IMFO) 

algorithm has been proposed for solving Reactive power problem. Navigation method of moths 

in nature called transverse orientation is the key inspiration of the moth-flame algorithm (MFO). 

By maintaining a fixed angle with respect to the moon, Moths fly in the night [13] and it’s an 

effective mechanism for moths travelling in a straight line for long distances. Due to very slow 

convergence and poor precision, an improved version of MFO algorithm based on Levy-flight 

strategy has been proposed to solve the reactive power problem. The diversity of the population 

can be increased by Levy-flight to overcome premature convergence in order to reach the global 

optimal solution. This methodology improves the trade-off between exploration and 

exploitation ability of moth-flame algorithm (MFO).The proposed Improved Moth-Flame 

Optimization (IMFO) algorithm has been tested in standard IEEE 30, 57,118 bus test systems 

and simulation results show clearly about the better performance of the proposed algorithm in 

reducing the real power loss with control variables within the limits. 

 

 

2. OBJECTIVE FUNCTION 

 

2.1. Active power loss 

 

 Main objective of the reactive power dispatch problem is to minimize the active power 

loss and mathematically written by,  

 

 F = 𝑃𝐿 = ∑   gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij) (1) 

 

where: F - objective function, PL – power loss, gk – conductance of branch, Vi and Vj  are voltages 

at buses i, j, Nbr - total number of transmission lines in power systems.  

 

2.2. Voltage profile improvement 

 

Objective function F has be rewritten to minimize the voltage deviation in PQ buses as 

follows, 

 

 F = 𝑃𝐿 + ωv × VD (2) 

 

where VD – voltage deviation, ωv- is a weighting factor of voltage deviation. 
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The Voltage deviation is given by: 

 

  VD = ∑ |Vi − 1|Npq
i=1  (3) 

 

where Npq - number of load buses. 

 

2.3. Equality Constraint  

 

 The power balance equation with respect to the equality constraint of the problem is 

written as follows: 

 

 PG = PD + PL (4) 

 

where PG- total power generation, PD  - total power demand. 

 

2.4. Inequality Constraints 

 

The inequality constraint with upper and lower bounds on the active power of slack bus 

(Pg), and reactive power of generators (Qg) are written as follows: 

 

 Pgslack
min ≤ Pgslack ≤ Pgslack

max  (5) 

 

  Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng (6) 

 

Upper and lower bounds on the bus voltage magnitudes (Vi) is given by:          

 

 Vi
min ≤ Vi ≤ Vi

max , i ∈ N (7) 

 

Upper and lower bounds on the transformers tap ratios (Ti) is given by: 

 

 Ti
min ≤ Ti ≤ Ti

max , i ∈ NT (8) 

 

Upper and lower bounds on the compensators (Qc) is given by: 

 

 Qc
min ≤ Qc ≤ QC

max , i ∈ NC (9) 

 

where N is the total number of buses,  Ng  is the total number of generators,  NT is the total 

number of Transformers,  Nc is the total number of shunt reactive compensators. 
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3. MOTH-FLAME OPTIMIZATION (MFO) ALGORITHM  

 

Moth-flame optimization algorithm is based on the simulation of the behaviour of moths 

which has special navigation methods in night. Navigation method of moths in nature called 

transverse orientation is the key inspiration of the moth-flame algorithm (MFO).  

By maintaining a fixed angle with respect to the moon, Moths fly in the night and it’s 

an effective mechanism for moths travelling in a straight line for long distances. Set of moths 

is represented in a matrix N in the MFO algorithm. There is an array 𝑂N for all the moths, to 

store the corresponding fitness values. Flames are other one of key components in the moth-

flame algorithm.  

It is also assumed that there is an array 𝑂L for the flames, a matrix S similar to the moth 

matrix is considered to store the corresponding fitness values.  

Three-tuple in MFO algorithm defined as follows:  

 

 𝑀𝐹𝑂 = (𝑄, 𝐺, 𝐻)  (10) 

 

An arbitrary population of moths is created by the function Q. Q function mathematical 

model is given is as follows:   

 

 𝑄: ∅ → {𝑁, 𝑂𝑁} (11) 

 

Moths move around the exploration space on basis of G function. G function received 

the matrix of N and returns its modernized one ultimately:  

 

 𝐺: 𝑁 → 𝑁 (12) 

 

When the termination criterion is satisfied H function returns true and it will be false 

when termination criterion is not satisfied:  

 

 𝐻: 𝑁 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} (13) 

 

MFO algorithm is defined as follows, with Q, G, and H, as the general framework:  

N = ( ); 

When (N) is equal to false condition, then: N = (N) 

End. 

𝑃 Function is iteratively run after the initialization, until the H function returns true.  

When simulating the behaviour of moths mathematically, with respect to a flame the 
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position of each moth is updated using the following equation:  

 

 𝑁𝑖 = 𝑆𝐿(𝑁𝑖 , 𝐹𝑙𝑗) (14) 

 

The 𝑖th moth indicated by N𝑖, 𝑗th flame indicated by 𝐹𝑙𝑗, and 𝑆L imply the spiral 

function.  

Spirals are utilized by following conditions: (a) initial point of the Spiral’s should start 

from the moth; (b) final point of the Spiral’s should be the position of the flame; (c) in the 

search space fluctuation range of spiral should not exceed the space limit.  

Considering these points, a logarithmic spiral is defined for the MFO algorithm as 

follows:  

 

 𝑆𝐿(𝑁𝑖, 𝐹𝑙𝑗) = 𝐷𝑇𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑓𝑡) + 𝐹𝑙𝑗 (15) 

 

Distance of the 𝑖th moth for the 𝑗th flame is indicated by 𝐷T𝑖, for defining the shape of 

the logarithmic spiral 𝑏 is a constant, and 𝑡 is an arbitrary number in the range [−1, 1].  

Calculation of 𝐷T is as follows:  

 

 𝐷𝑇𝑖 = |𝐹𝑙𝑗 − 𝑁𝑖| (16) 

 

where N𝑖 indicate the 𝑖th moth, 𝐹l𝑗 indicates the 𝑗th flame, and 𝐷T𝑖 indicates the distance of the 

𝑖th moth for the 𝑗th flame. Spiral flying path of moths described by Equation (16). The next 

position of a moth is defined with respect to a flame by equation (16).  

In the spiral equation the 𝑡 parameter defines how much the next position of the moth 

should be close to the flame (𝑡 = −1 is the closest position to the flame, while 𝑡=1 shows the 

farthest). Position updating in equation (15) requires the moths to move towards a flame, & it 

lead to be trapped in local optima quickly.  

Each moth is obliged to update its position using only one of the flames by equation 

(15) to prevent trap in local optima. In the search space the position updating of moths with 

respect to 𝑛 different locations may degrade the exploitation to reach best promising solutions. 

An adaptive mechanism is provided to the number of flame to resolve degrade problem & it 

done by following equation, 

 

 𝐹𝑙𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝐾 − 𝑙 ∗
𝐾−𝑐𝑛

𝐼𝑁
) (17) 

 

The current number of iteration is given by cn, maximum number of flames indicated 

by K, and the maximum number of iterations by IN. Exploration and exploitation of the search 

space is perfectly balanced by gradual decrement in number of flames.  
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Position of moths has been initialized 

While (Iteration <= Max iteration);  

By equation (17) update the flame number 

𝑂N = Fitness Function (N);  

If iteration = = 1  

𝐹l = sort (N); 𝑂𝐹l = sort(𝑂N);  

Else  

𝐹l = sort (N𝑡 – 1, N𝑡);  𝑂𝐹l = sort(N𝑡−1, N𝑡);  

End  

For 𝑖=1:𝑛  ; For 𝑗=1:𝑑  

Modernize 𝑟 and 𝑡  

By equation (16) calculate 𝐷T using with respect to the corresponding moth  

By equations (14) and (15) renew (𝑖, 𝑗) with respect to the corresponding moth  

End End. 

 

 

4. LEVY-FLIGHT 

 

Animals look for food in arbitrary manner, as moving place to place. The choice of the 

direction relies only on a mathematical model [15], which is called Levy- flight &  it  have been 

applied to optimization problems which show its promising capability [14,15].Mathematically 

exclamation, an easy version of Levy distribution can be defined as [14], 

 

𝐿(𝑠, 𝛾, 𝜇) = {
√

𝛾

2𝜋
             

0    𝑖𝑓 𝑠 ≤ 0  

𝑒𝑥𝑝 [−
𝛾

2(𝑠−𝜇)
]

1

(𝑠−𝜇)3 2⁄     𝑖𝑓 0  < 𝜇 < 𝑠 < ∞ (18) 

 

where  𝛾 > 0 parameter is scale (controls the scale of distribution) parameter, μ parameter is 

location or shift parameter. In general, Levy distribution should be defined in terms of Fourier 

transform as follows [14], 

 

 𝐹(𝑘) = 𝑒𝑥𝑝[−𝛼|𝑘|𝛽], 0 < 𝛽 ≤ 2 (19) 

 

where α is a parameter within [-1,1] interval and known as scale factor. By Levy flight, new-

fangled state of the particle is designed as [15], 

 

 𝑋𝑡+1 = 𝑋𝑡 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦 (𝛽) (20) 

 

α is the step size which must be related to the scales of the problem of interest.  
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In the proposed method α is arbitrary number for all dimensions of particles [14]. 

 

 𝑋𝑡+1 = 𝑋𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑠𝑖𝑧𝑒(𝐷)) ⊕ 𝐿𝑒𝑣𝑦(𝛽) (21)  

 

The product ⊕ means entry-wise multiplications. A non-trivial scheme of generating 

step size s samples are summarized as follows [14], 

 

 𝑋𝑡+1 = 𝑋𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑠𝑖𝑧𝑒(𝐷)) ⊕ 𝐿𝑒𝑣𝑦(𝛽)~0.01
𝑢

|𝑣|1 𝛽⁄ (𝑥𝑗
𝑡 − 𝑔𝑏) (22) 

 

where u and v are drawn from the normal distributions. That is [15], 

 

 𝑢~𝑁(0, 𝜎𝑢
2)   𝑣~𝑁(0, 𝜎𝑣

2) (23) 

 

with 

 

 𝜎𝑢 = {
Г(1+𝛽)𝑠𝑖𝑛(𝜋𝛽/2)

Г[(1+𝛽)/2]𝛽2(𝛽−1)/2}
1

𝛽⁄
 , 𝜎𝑣 = 1 (24) 

 

Here Г is standard Gamma function. While performing distribution by Levy flights [14] 

is the value taken by the β parameter and it substantially affects distribution. 

 

 

5. PROPOSED IMPROVED MOTH- FLAME (IMFO) OPTIMIZATION 

ALGORITHM 

 

Proposed IMFO algorithm‘s global search ability is strengthened using arbitrary walk 

with help of Levy-flight to eliminate the weakness of MFO algorithm [13] Improved Moth-

flame algorithm (IMFO) for solving Reactive power problem given below. 

 

Position of moths has been initialized 

While (Iteration <= Max iteration) ; By equation (17) update the flame number 

𝑂N = Fitness Function (N);  

If iteration = = 1  

𝐹l = sort (N);  𝑂𝐹l = sort(𝑂N);  

 Else  

𝐹l = sort (N𝑡 − 1, N𝑡);  𝑂𝐹l = sort(N𝑡−1, N𝑡);  

End  

For 𝑖=1:𝑛  ; For 𝑗=1:𝑑  
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Modernize 𝑟 and 𝑡  

By equation (16) calculate 𝐷T using with respect to the corresponding moth  

By equations (14) and (15) renew (𝑖, 𝑗) with respect to the corresponding moth  

End  

For each search agent renew the position of the existing search agent by using Levy-flight 

End  

When Iteration = Iteration + 1;  

End 

 

 
6. SIMULATION RESULTS  

 

In standard IEEE 30-bus, 41 branch system validity of proposed Improved Moth-Flame 

Optimization (IMFO) algorithm has been verified and the system has 6 generator-bus voltage 

magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. 2, 5, 8, 11 and 

13 are considered as PV generator buses, Bus 1 is taken as slack bus and others are PQ load 

buses. Primary variables limits are given in Table 1. 

 
Table 1. Primary Variable Limits (Pu) 

List of  Variables Minimum Maximum group 

Generator Bus 0.95 1.1 Continuous 

Load Bus 0.95 1.05 Continuous 

Transformer-Tap 0.9 1.1 Discrete 

Shunt Reactive Compensator -0.11 0.31 Discrete 

 

In Table 2 the power limits of generators buses are listed. 

 

Table 2. Generators Power Limits 

Bus  Pg Pgminimum Pgmaximum Qgminimum Qmaximum 

1 96.00 49 200 0 10 

2 79.00 18 79 -40 50 

5 49.00 14 49 -40 40 

8 21.00 11 31 -10 40 

11 21.00 11 28 -6 24 

13 21.00 11 39 -6 24 

 

Table 3 shows the proposed Improved Moth-Flame Optimization (IMFO) algorithm 

successfully kept the control variables within limits. 

Table 4 narrates about the performance of the proposed Improved Moth-Flame 

Optimization (IMFO) algorithm.  
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Fig 1 shows about the voltage deviations during the iterations and Table 5 list out the 

overall comparison of the results of optimal solution obtained by various methods. 

 
Table 3. After optimization values of control variables 

List of Control  Variables IMFO 

V1 1.0512 

V2 1.0434 

V5 1.0297 

V8 1.0382 

V11 1.0735 

V13 1.0529 

T4,12 0.00 

T6,9 0.01 

T6,10 0.90 

T28,27 0.91 

Q10 0.10 

Q24 0.10 

Real power loss 4.2898 

Voltage deviation 0.9090 

 

Table 4. Performance of IMFO algorithm 

Iterations 25 

Time taken (secs) 7.89 

Real power loss 4.2898 

 

 
Fig. 1. Voltage deviation (VD) characteristics 
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Table 5. Comparison of results 

List of Techniques  Real power loss (MW) 

SGA(Wu et al., 1998) [16] 4.98 

PSO(Zhao et al., 2005) [17] 4.9262 

    LP(Mahadevan et al., 2010) [18] 5.988 

EP(Mahadevan et al., 2010) [18]      4.963 

CGA(Mahadevan et al., 2010) [18] 4.980 

AGA(Mahadevan et al., 2010) [18] 4.926 

CLPSO(Mahadevan et al., 2010) [18] 4.7208 

HSA (Khazali et al., 2011) [19] 4.7624 

BB-BC (Sakthivel et al., 2013) [20] 4.690  

MCS(Tejaswini sharma et al.,2016) [21] 4.87231 

Proposed IMFO 4.2898 

 

At that Improved Moth-Flame Optimization (IMFO) algorithm has been tested in 

standard IEEE-57 bus power system. The reactive power compensation buses are 18, 25 and 53. 

Bus 2, 3, 6, 8, 9 and 12 are PV buses and bus 1 is selected as slack-bus. The system variable 

limits are given in Table 6.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.129 p.u. Qload = 3.069 p.u. 

The total initial generations and power losses are obtained as follows: 

∑ PG = 12.471 p.u. ∑ QG = 3.3160 p.u. 

Ploss = 0.25875 p.u. Qloss = -1.2074 p.u. 

 

Table 6. Variable Limits 

Reactive Power Generation Limits 

Bus no 1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
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Table 7 shows the various system control variables i.e. generator bus voltages, shunt 

capacitances and transformer tap settings obtained after optimization which are within the 

acceptable limits. In Table 8, shows the comparison of optimum results obtained from proposed 

methods with other optimization techniques. These results indicate the robustness of proposed 

approaches for providing better optimal solution in case of IEEE-57 bus system. 

 
Table 7. Control variables obtained after optimization 

Control Variables IMFO 

V1 1.10 

V2 1.039 

V3 1.038 

V6 1.027 

V8 1.029 

V9 1.006 

V12 1.011 

Qc18 0.0664 

Qc25 0.200 

Qc53 0.0476 

T4-18 1.004 

T21-20 1.043 

T24-25 0.861 

T24-26 0.876 

T7-29 1.057 

T34-32 0.879 

T11-41 1.011 

T15-45 1.030 

T14-46 0.910 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 

 

Table 8. Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal solution 

1 NLP [22] 0.25902 0.30854 0.27858 

2 CGA [22] 0.25244 0.27507 0.26293 
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3 AGA [22] 0.24564 0.26671 0.25127 

4 PSO-w [22] 0.24270 0.26152 0.24725 

5 PSO-cf [22] 0.24280 0.26032 0.24698 

6 CLPSO [22] 0.24515 0.24780 0.24673 

7 SPSO-07 [22] 0.24430 0.25457 0.24752 

8 L-DE [22] 0.27812 0.41909 0.33177 

9 L-SACP-DE [22] 0.27915 0.36978 0.31032 

10 L-SaDE [22] 0.24267 0.24391 0.24311 

11 SOA [22] 0.24265 0.24280 0.24270 

12 LM [23] 0.2484 0.2922 0.2641 

13 MBEP1 [23] 0.2474 0.2848 0.2643 

14 MBEP2 [23] 0.2482 0.283 0.2592 

15 BES100 [23] 0.2438 0.263 0.2541 

16 BES200 [23] 0.3417 0.2486 0.2443 

17 Proposed IMFO 0.22092 0.23016 0.22268 

 

Then Improved Moth-Flame Optimization (IMFO) algorithm has been tested in standard 

IEEE 118-bus test system [24].The system has 54 generator buses, 64 load buses, 186 branches 

and 9 of them are with the tap setting transformers. The limits of voltage on generator buses are 

0.95 -1.1 per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 

-1.1, with the changes step of 0.025. The limitations of reactive power source are listed in Table 

9, with the change in step of 0.01. 

 

Table 9. Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have been list in Table 10 and the results 

clearly show the better performance of proposed Improved Moth-Flame Optimization (IMFO) 

algorithm in reducing the real power loss.  

 

Table 10. Comparison results 

Active power loss (MW) BBO 

[25] 

ILSBBO/ 

strategy1 [25] 

ILSBBO/ 

strategy 2 [25] 

Proposed 

IMFO 
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Min 128.77 126.98 124.78 117.64 

Max 132.64 137.34 132.39 121.72 

Average 130.21 130.37 129.22 118.32 

 

 

 

7. CONCLUSION 

 

In this paper, Improved moth-flame optimization (IMFO) algorithm been successfully 

implemented to solve Optimal Reactive Power Dispatch problem. An improved version of MFO 

algorithm based on Levy-flight strategy has been solved the reactive power problem. The 

diversity of the population can be increased by Levy-flight to overcome premature convergence 

in order to reach the global optimal solution. This methodology improved the trade-off between 

exploration and exploitation ability of moth-flame algorithm (MFO).The proposed IMFO 

algorithm has been tested in the standard IEEE 30, 57,118 bus systems. Simulation results show 

that IMFO provided better optimal solution in decreasing the real power loss. The control 

variables obtained after the optimization by IMFO are well within the limits. 
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