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Abstract: The paper presents an evaluation of analytical self and mutual impedances 

formulas of lines with earth return, taking into account the ground correction terms. The 

determined formulas contain semi-infinite integral terms which are calculated by a novel 

stable and efficient numerical integration scheme in order to overcome the involved 

oscillation problems. It might seek approximations of the semi-infinite integrals by 

replacing an exponential or algebraic function, the objective being to permit analytic 

integration. Since there is no good systematic method for making these replacements, their 

success depends directly on the intuition and ingenuity, taking into account that in practice 

the integrand has limited accuracy. 

 

 

 

1. INTRODUCTION 

 

 The problem of environmental effects and electromagnetic interferences produced by 

time varying electric and magnetic fields due to A.C. currents flowing through high voltage or 

medium voltage power lines have been the topic of numerous research papers over the last 

decades [1-3]. Therefore, it is well known that due to inductive and capacitive couplings, 

dangerous eddy currents could be induced in any metallic structure placed nearby overhead or 

underground power lines. These dangerous situations could be also detected in case of 

underground electrical cables or cable screens, designed to attenuate the electric and magnetic 

field distributions in the surrounding zone. The result consists in insulation overheating which 

leads to structural integrity of these cables [4, 5]. 
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There are generally two ways to analyze the electromagnetic interference between 

transmission lines and nearby parallel metallic structures: (1) using the conventional circuit 

method along with grounding analysis or (2) using the electromagnetic field method. 

Regardless of the method used, an essential step during the numerical algorithm is the 

computational of the self and mutual impedances of the underground/aerial conductors. 

There are many efforts to solve the problem in the reference materials, but usually the 

authors made the approximations derived from the circuit’s theory. Many physical events 

cannot be taken into account using the elements with concentrated parameters, i.e. grounding 

resistors, capacitors and inductances to describe the behavior into the soil. To avoid 

mathematical difficulties, it is introduced some simplifications, which conceal the physical 

picture of the problem. Skin effect in the soil, especially for different earth's resistivity, is 

hidden in empiric formulas, diagrams and nomograms, usually applied in power engineering. 

For this reason, it has been decided to take the physical base as an essential electromagnetic 

starting-point and the applied mathematical methods used to compute the self and mutual 

impedances, will be only the consequence of such a treatment [6]. 

 

 

2. EARTH RETURN IMPEDANCE EVALUATION USING CARSON FORMULAS 

 

J. R. Carson published a theory [7] suitable to calculate the electromagnetic fields due 

to a horizontal current carrying conductor, which is above a lossy earth. The integral found by 

Carson is usually applied for the calculation of self and mutual impedance of lines with earth 

return. He was one of the firsts who evaluated transmission line parameters and found 

expressions for the elements of the impedance matrix Z that nowadays serve as a good 

reference under the name “Carson’s equations”. Accordingly to this theory, the calculation of 

line impedance (self and mutual impedance of lines with earth return) is based on equations 

that contain semi-infinite integrals with complex arguments. For evaluation of these integrals, 

infinite series and also some convenient approximations for low frequencies have been 

proposed.  

In the mutual impedance equation (1) could be identified a Sommerfeld integral [6, 8], 

highlighted in equation (2),  
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which formulates a solution J = P + jQ in the form of a sum of eight infinite series (figure 1): 
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Fig. 1 – Representation of the P and Q functions 

 

The infinite series are rapidly convergent and an implementation in a numerical 

computation software lead to the function J, plotted against r and θ and using n = 5 as the 

number of considered factors [9]. 

 

Fig. 2 - Function J plotted against r and θ 

 

Introducing in inductances relations the (concept of) skin depth these parameters 

becomes a complex numbers with terms which represent the energy dissipation in the ground. 

This principle is available for conductor’s self and mutual inductance calculations [10]. 
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Fig. 3 – Geometrical configuration using a fictive ground return plane 

 

The complex ground return plane could be explained using some fundamental 

equations for self and mutual impedances of the ideal conductor (complex plane). It starts 

with the ideal conductor/ground return (self and mutual) impedances: 
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The impedances Zmg, Zsg are the Carson’s ground correction terms of the mutual and 

self-impedance per unit length that introduce the skin depth effect in the ground.  

Could be recognizing in the first term of the equations (4), with the effect hypothesis 

(the alternative current is concentrating on the conductor exterior surface) [10]. The ground 

correction term of the impedances per unit length is: 
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After evaluating the semi-infinite integrals using series expansion it is obtained the 

following expressions of impedances, using the complex earth return plane: 
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These equations provide simple and also remarkably accurate substitutes to Carson’s 

equations (electronic handheld calculators can evaluate them instead of computers) over the 

whole range of frequencies. 

The authors developed an algorithm which can compute the error between the 

formulas for self and mutual impedances, for arbitrary geometries (see the results in figure 4) 

with the following steps (figure 3): 

 

Fig. 4 – Error computation using a Mathcad algorithm 

 

 

Fig. 5 - Relative error between the formulas for self and mutual impedances, for arbitrary geometries 
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3. EARTH RETURN IMPEDANCE EVALUATION USING POLLACZEK 

FORMULAE 

 

Pollaczek [11] derives a solution for the electromagnetic coupling problem by 

following roughly the same path as Carson. His solution is also formulated in an integral 

from, however this integral is a doubly infinite one compared to Carson’s semi-infinite one. 

To calculate buried cable earth impedances, one has to solve Pollaczek’s integral, which, as 

the one by Carson, does not have a closed form solution.  

But, whilst Carson’s integral can be solved numerically with relative easiness (using 

the infinite series expansion), Pollaczek’s integrand is highly oscillatory and irregular. For 

this reason, its integration by series or by general purpose algorithms presents convergence 

problems. Wedepohl [12] has proposed a series solution to Pollaczek’s integral, but this series 

is very difficult to handle and has slow convergence rate at certain application ranges [13]. 

 

Fig. 6 - Underground transmission network 

 

For a system of two underground cables, presented in figure 6, the self and mutual 

impedances can be calculated with equation (8)  
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where J is the infinite integral and has the form emphasized in equation (9): 
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By introducing in equation (8) the variable change: pu /=b  respectively considering 

that
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2

2 , a new formula for J is obtained: 
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It should be noted that h and x are always divided by |p|, which is interpreted as 

normalizations of distances h and x with respect to the penetration depth |p|. Thus, the 

following reduced dimensions parameters are introduced in equation (10):
h

x

p

h

2
,

2
== hx , 

alongside the notation: 

( ) ( )uGjuF
uu

j
uu

ju ×+=
++-

×+
++

=+
2

1

2

1 4242
2   (11) 

in order to obtain a final formula for J, that highlights the fact that this integral is a function of 

dimensionless variables ξ and η only: 
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Fig. 7 - Graphical representation of F(u) and G(u) 
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Fig. 8 - Graphical representation of F(u)-u and 12·G(u) 
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Based on figures 7 and 8 an asymptotic approximations could be considered, used to 

formulate approximation criteria of the integral: 
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The first term from equation (11) is a complex function, with real and imaginary 

components that are decreasing dependent on the physical parameters of the cable system. As 

opposed to the first mentioned term, the other three terms are depending on the cable system 

physical properties. Based solely on the second term, a truncation criterion for integral is 

proposed. By replacing the semi-infinite integral with a finite one: 
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which leads to the relative error of the approximation: 
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Using empirical methods [14] it is possible to establish the value of  x  to provide 

umax>2.  The third term from equation (12) is a complex one, with irregular oscillations  
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If the condition from equation (17) is fulfilled, the last term does not oscillate:  
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The graphical representation of 12∙G(u) from figure 8, is made for a value of ξ 

parameter higher than the value indicated in equation (17). 

Each value which is an odd multiple of π/2, corresponds to a zero crossing of the 

cosine term in (16), while even multiples of π/2 correspond to the zeros of the sine term. The 
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Figure 9 shows the irregular oscillations of the third term by a set plot for ( )[ ]uGxcos

and ( )[ ]uGxsin  for different values of ξ. 
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Fig. 9 - Graphical representation of cos[ξG(u)]and sin[ξG(u)] 

 

The fourth term from equation (12) is a cosine function, so it is an oscillatory regular 

term. The number of zeros within the truncated interval of u (that is [0, umax]) is: 
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This doesn’t present oscillations in the truncated interval if: 
max2 ux
p

h < . 

Uribe [14] does a comprehensive study of Pollaczek’s integral and points out the 

difficulties encountered when attempting its numerical solution. His analysis provides a 

strategy to avoid these difficulties. Furthermore, he provided solutions to Pollaczek’s integral 

in graphic form for a broad range of applications besides normalized impedances for 

underground cables within the same broad application range. Finally, he compares the 

normalized impedances against those from a widely used approximation. His studies focus 

mainly on underground cables. 

 

 

4. PROPOSED NUMERICAL INTEGRATION PROCEDURES 

 

New analytical formulas for ground correction terms for self and mutual impedances 

are derived [6, 15, 16]. The determined formulas contain semi-infinite integral terms which 

are calculated by a novel stable and efficient numerical integration scheme in order to 

overcome the problems arising from the oscillate form of the infinite integrals. 

In the solution of larger electromagnetic interference problems, it is often needed the 

evaluation of an integral that is function of a parameter. A choice of numerical integration 

may be given by the use of a family of orthogonal polynomials. These polynomials generate a 

Gaussian quadratic rule, according to the following theorem: assume a weight function on the 

interval [a; b], respectively a family of orthogonal polynomials {φk(x)} with respect to this 

weight function and this interval [6, 16]. 
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The quadratic rule is defined by: 
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Then Gn(p) is exact for all polynomials 1n2Pp -×Î , and there exists ]b;a[Îx  such that  
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Appling this theorem to construct a Gaussian quadratic rule for semi-infinite integrals 

of the form leads to: 
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For our case, the weight function is the reduced decaying exponential ( ) xexw -= , so 

the orthogonal polynomial family that we need to use is the Laguerre family. We choose the 

solutions of the fourth-order Laguerre polynomial: 
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Then the weights are correspondingly evaluated, by the particular form of relation 

above: 
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The parameter h provides an extension in the numerical evaluation of the semi-infinite 

integral. These weight integrals are computed using some kind of numerical integration 

routine, such as the trapezoid of Simpson rule. Their values, according to the imposed 

parameter are exposed in the following Table 1: 

Table1. Numerical values of the weight integrals 

h [m] 1 2 3 

w1 0.693 0.441 0.339 

w2 0.357 0.056 -0.011 

w3 0.039 0.0024 0.0055 

w4 0.0005 -0.00019 -0.00047 
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On these conditions, we may apply the explained solving procedure to the case of a 

semi-infinite integral involving the evaluation of a pipeline to ground impedance [15], and 

indirectly the induced potential or current density on the metallic pipeline due to the 

coexistence with a high voltage power grid, above the ground. The explicit integral is: 
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Considering the evaluation of this integral at the surface level of the earth y=0 and the 

m coefficient depends on the value of the working frequency of the power grid, as this 

relation shows: 
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the involved function is: 
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and it remains only to apply and evaluate the quadratic rule: 
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For an imposed test parameter u=1,2,3, in the conditions presented above, regarding 

the weight integrals and the parameter h, a matrix of results it is achieved.  

 

Table2. Numerical values of the semi-infinite integral – test case 

  u 

h 
1 2 3  

1 0.868-1.681j 0.646-1.231j 0.049-0.946j 

·10
-5 2 0.647-1.411j 0.531-1.036j 0.042-0.797j 

3 0.584-1.01j 0.039-0.736j 0.029-0.565j 

 

It is worthwhile to notice that the results are complex values, and their physical 

significance relates to mutual impedance, with the real part – the resistance and the imaginary 

part – the reactance.  

It is observed that most of the area under integrand occurs for small values of x, 

especially when y is large. This fact suggests that we might seek approximations of integral 

by replacing an exponential or algebraic function, the objective being to permit analytic 

integration.  

Since there is no good systematic method for making these replacements, their success 

depends directly on the intuition and ingenuity, taking into account that in practice the 

integrand has limited accuracy. 
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4. CONCLUSIONS 

 

The paper presents a numerical evaluation of the self and mutual impedance formulas 

for lines with earth return, formulas which contain semi-infinite integrals with high oscillation 

integrand. New analytical formulas for these terms are presented in the paper. We might seek 

approximations of the semi-infinite integrals by replacing an exponential or algebraic 

function, the objective being to permit analytic integration. Since there is no good systematic 

method for making these replacements, their success depends directly on the intuition and 

ingenuity, taking into account that in practice the integrand has limited accuracy. 

It can be observed that the integrand of Pollaczek infinite integral has negative real 

part and positive imaginary part at high frequencies, which result in negative resistance and 

inductance. The incorrect integrant in a high frequencies region causes the numerical 

instability of the infinite integral. So, it is necessary to find an applicable analytically limit for 

this infinite integral. 

However, it is very hard to calculate the earth-return impedance, but a very promising 

solution to the problem might be a numerical electromagnetic analysis which not requires any 

impedance and admittance formulas, which are compulsory to use in circuit theory approach. 
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