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Abstract: The meshing techniques are very important for the economy and the precision of a Finite Eelment 

Method (FEM) analysis. The presented algorithm for the discretization of a magnetostatic plane parallel 

configuration is based on dual formulation of magnetostatic field and generates, in iterative steps, a final mesh 

which is very close to the magnetostatic spectrum, magnetic field lines and equipotentials lines for scalar 

magnetic potential. 

 

 

 

1. INTRODUCTION 

 

 Discretization of the problem region is the most delicate step, the bigger error 

generator of an FEM field analysis. Using triangular first order elements, with a careful 

meshing, the solutions have good accuracy and the mathematical problem becomes simple. 

Generated particularities, offering the solution as joined uniform fields with fixed geometrical 

position established in preprocessor by discretization, rarely gives an acceptable ratio: 

accuracy, number of nodes. So the mesh refinement techniques, permanently adapted to the 

level of error, are a compulsory step in modern FEM. Proposed algorithm goes to obtain the 

best solution with the initially imposed number of nodes without increasing the polynomial 

order of elements. Also it offers the possibilities to reduce the studied domain and to improve 

the domain frontiers and/or the associated conditions if there are imposed using truncation 

methods [3]. Dual formulations of the magnetostatic fields generate simplicity, a very strong 

error estimator, not needing numbering techniques and composing the system matrix, etc. 
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2. DUAL FORMULATION OF MAGNETOSTATIC FIELDS 

 

 In current-free regions magnetostatic simulation implies simultaneously solving the 

equations, 

 0B  (1) 

 0 H  (2) 

   HHB r  0  (3) 

associated with boundary conditions at the interface Γ between media 1 and media 2, 

   021 


HHn  (4) 

 0)( 21 


BBn  (5) 

 Introducing both magnetic potentials, vector and scalar, 

 ArotB   (6) 

 mVH   (7) 

two mathematical formulations are available: 

 Electrical where (1), (3), (5) are verified exactly, the errors are in (2), (4) that is magnetic 

vector potential formulation, 

 Magnetical where (2), (3), (4) are verified exactly, the errors are in (1), (5) that is 

magnetic scalar potential formulation. 

 

 

3. FEED BACK CRITERIA 

 

 The success of a mesh adaption algorithm is strongly dependent on the feed back 

criteria. Starting from the dual formulation of the magnetostatic fields it is easy to estimate the 

error of the analysis using error in constitutive relation [2] that has the main advantage to be 

the upper bound of the exact error. With B and 'H , the FEM solutions obtained from vector, 

respectively scalar magnetic potentials, 

 'HBe   (10) 

The global absolute and relative error associated are defined in a bounded domain D, 

   dDHBe
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4. SPECTRUM TYPE DISCRETIZATION 

 

 An imputed initial mesh, generator of the field geometry and the maximum number of 

nodes, start a typically dual FEM analysis. The solution of the potentials (vectorial and scalar) 

allows to calculate the position of intersections between flux lines and equipotentials, solving 

the equations system: 

 

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imp

imp
 (13) 

with Vimp and Aimp the scalar and vector potentials choused to generate the field spectrum and 

constants a, b, c, a1, b1, c1 computed from the “old” coordinates of the nodes and 

corresponding values of the potentials:  
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Replacing Vm with A, we obtain the constants for vector potentials equations. 

 The cycle is repeated until the imposed error for geometrical displacement of the mesh 

is reached. 

 For the e element, see fig. 1.a, based on FEM calculation of the magnetic flux density 

and field: 
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with simple geometrical calculation it is easy to see that the interelemental boundary 

conditions are satisfied with the position precision. 
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Fig.1. a. An element of the spectrum type discretization 
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Fig.1. b. Refinement of the equipotential line 25 

 

 The feed back criteria, for each element, is reached if the error in constitutive relation 

become scalar and: 

   0
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Satisfying both conditions goes to rectangular spectrum cells. With exception of the uniform 

field the zero error could not be touched. 
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 The presented algorithm improved the analysis precision by transforming the spectrum 

cells in “most appropriate rectangles” choosing the best values of potentials Vimp and Aimp, 

given by the two refinement angles and two refinement directions.  

 The refinement directions have to be choused as the areas with most unaligned flux 

lines between two equipotentials and most unaligned equipotentials between two flux lines. 

The calculus of the refinement angle is based on the determination of the arithmetical 

media of the same type of lines angles followed by the refinement directions. With these 

values there are computed the desired values to be imposed on potentials as shown in fig.1.b.. 

The position of line 25 is redrawn at the same angle to both neighborly lines 14, 36. The value 

for potential can belong to any point of intersection between the dotted line (FEM line in 

those two elements) and the frontiers. The last step of fitting the discretization trough the 

spectrum is recommended to validate the discretization.  

A control of the boundary conditions becomes possible passing the quality of being 

the frontier to a close line of the spectrum. Choosing the new frontier as a far distance line or 

infinitely close one the analysis area will be decrease or not. 

The entire algorithm computing schemes are based on recursive strategies given by the 

first impute of the mesh, made in a matrix disposal of nodes as intersections of equipotentials 

and flux lines. No numbering technique is necessary and the system matrix is not defined. 

 

 

5. EXAMPLE 

 

An infinite ferromagnetic (infinite relative magnetic permeability) wire is placed in a 

uniform magnetic field perpendicular to its filed lines. An initial 2162 nodes mesh, fig. 3.b, 

sets the geometry, fig.3.a.  
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Fig.3.a. The geometry of the analysis domain; b. The 2162 initial mesh 
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The refined mesh, witch also performed the decreasing of the analysis domain to a 

quarter of started one, shown in Fig. 4.a, generate the magnetic spectrum, Fig.4.b and reached 

the global relative error 1.53% in tree steps. 

 

Fig.4. a. Refined mesh; b. magnetic spectrum 
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